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Table: US and Sl Units

Fundamental Variable US Units Sl Units
Mass, m | = seeeeee Kilogram (kg)
Force, F pound (lby)
(11b,=1slugx1ft/ls?) | = =cceeeeee
Length, L feet (ft) meter (m)
Time, t second(s) second(s)
Derived Mass, m slug | @ emeeee
Force, F newton (N)
--------- (1 N=1kgx1m/s?)
Density, p slugs/ft? kg/m?3
Specific Weight, Y Ib,/ft3 N/m3
Pressure, p Ib/ft? (psf) N/m? or
Pascal (Pa)
Pressure Head, h = (ply) feet ( ft) meter (m)
Energy or Work, E Ib-ft N-m or Joule(J)
Power, P = E/t Ib,-ft/s N-m/s or
Note: | HP=5501b-ft/s Jis (Watt, W)
Dynamic Viscosity, Ibs- s/ft? N-s/m?2
Kinematic Viscosity, n = p/p ft2/s m?/s
3




Comparison Between Full-Pipe Flow and

Open Channel Flow
(Chow 1959)

1
|
1 | ___Dotumiine |

|

Variable y is the same

as the pressure head, PiIJE flow Ooen-channal flow
ply, in pipe flow




Commonly Used Cross-Sections

Full Pipe Flow:

1. Circular — Most widely used section:
«  Water supply networks (pressurized/full flow).

 Urban storm sewer systems (pressurized when
surcharged. Open channel flow otherwise).

Open Channels:

1. Trapezoidal
2. Rectangular (trapezoidal with side slopes vertical)

3. Triangular (zero bottom width).



Cross Sectional Properties — Trapezoidal Channel
Section

Widely Used Hydraulic Variables:

« Top Width T -y -

Flow Depth, y 1 Side Slope 1/z

......... \ -
Flow Area, A Bottom Width, B \

Special cases:

1)  Rectangular Section:

*Wetted Perimeter, P (shown in dashed line) A=By; P=B +2y;
R = By/(B+2y);
-Hydraulic Radius, R = A/P <+ D=AT=ByB=y
2) Wide Rectangular Section:
*Hydraulic Depth, D = A/T: B 220y ;

Hydraulic Radius, R =y

Important Note:

*Most channels require a formulae to compute cross-sectional properties (Slide 7).

«Circular sections require the use of a special nomograph (Slide 8) 6



Table: Geometric Elements of Channel Sections (Chow, 1959)

Section A:fa Wetted F:cl‘i[[letel' H}'drau}iec radius Top i‘fjdth Hydraugc depth Sectionz factor
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—— ¥ by
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* Satisfactory approximation for the interval 0 < z < 1, where z = 4y/T. When 2 > 1, use the exact expression P = (T/AVT+ 22+ 1izIn (z + +/T+ 22).



Nomograph: Cross Sectional Properties of a Circular Section
(Chow, 1959)
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Cross-Sectional Properties for Full Circular Pipe Flow




Problem 1(a): Computation of Cross Sectional
Elements in Channels

a) Trapezoidal Channel Section:

Given: A trapezoidal channel (z =2, B = 15 ft) carries a flow at a
depth of y = 5 feet.

Compute using the Geometric Elements Table from Slide 7:
1) Flow area A in sq. ft : a)100 b)170 c¢)125 d) 75

2) Wetted Perimeter, P in ft : a)551 b)37.4 c)25.5 d) 44.2
3) Hydraulics Radius, R in ft : a)2.7 b)28 c) 2.0 d) 3.4

4) Top width, T in ft: a)35 b)55 c) 20 d) 15



Problem 1(b): Computation of Cross Sectional Elements in
Channels

b) Circular Channel Section:
Given: A circular culvert (diameter, do = 4 ft.) carries a flow
at a depth of y = 3 feet.

Note: Ay = 3.14x4%/4 = 12.6 ft2; P, = 3.14x4.0 = 12.6 ft (full pipe flow);
Ro - Ao/Po =1.0

Compute using the nomograph from Slide 8:
1) Flow area A in sq. ft: a)12.6 b)10.3 «¢)8.5 d) 15.2

2) Wetted Perimeter, P in ft: a)12.6 b) 9.5 c)8.5 d)6.3

3) Hydraulic Radius, R in ft: a) 1.0 b) 0.9 c)1.5 d) 1.2
10



FLOW MEASUREMENT
Pipe Flow:

 Venturi meter

Discharge Equation:

Q= chz\/ [2a R {(S,/S.)=13] (1)

[1-(D,D,)*]

Q = flow rate in cfs ( or m%s)
« R’ = gage difference between 1 & 2( pressure drop) in ft (or m)
* A, = Area of venturi throat
 D,, D, =Pipe diameters at 1 and 2 in ft (or m)

« Sy, S, = Specific gravity of fluids in manometer and pipe, respectively

(Note: For water SG = 1 and specific weight, y = 62.4 Ib/ft3)
« C,= Discharge Coefficient (typical range 0.95-0.99)

Note: The flow equation above is only dependent on the gage difference R’ and not on
the orientation (horizontal , vertical or inclined) of the venturi meter. Equation is
independent of h.

11



Orifice Meter L st

Discharge Equation:

Q=C,A, \/ [ 2aR’ {(S,/S,)=1} ] 2) &

[1-(DyD,)*]
where,

Q = flow rate in cfs ( or m¥s)
A, = Area of orifice opening in ft? (or m?)
D,, D, = Pipe diameters at 1 and 2 in ft (or m)
S,, S, = Specific gravity of fluids in manometer and pipe, respectively
(Note: For water SG = 1 and specific weight, y = 62.4 Ib/ft3)
C, = Discharge Coefficient (typical range 0.60-0.82)
R’ = Pressure Drop (gage difference) in ft (or m)
12



Example 1: Venturimeter

Problem:

Determine the flow of water (specific gravity, S, =1) through a 24 inch pipe
diameter (D,) using a venturi meter with a 6 inch throat diameter (D,). The gage
difference, R’ in the manometer is 11.8 inches of Mercury (Hg). Assume a
coefficient of discharge C, = 0.95 and specific gravity of mercury, S, =13.6

Flow Equation: Q= CdAz\/ [2a R’ {(S,/S;) -1} ]
?[1 — (DyD4)* ]

H . Note: Pressure head drop
Solution: sh = PP ¥ = (R (1/5,)- )]
A2 = 3-14(6/1 2)2/4 = 0.196 ft2 h = height and p is pressure difference

between points 1 and 2 (see figure in Slide 11)

Pressure head drop Ah =[ R’ {(S,/S;)—1} ]

=(11.8/12) x { (13.6/1.0) -1} = 12.39 ft of water
(or pressure drop =12.39 x 62.4 = 773.1 psf)

Flow rate Q = 0.95 x 0.196 x { (2x32.2x12.39) /(1 — (6/24)4}%-°
= 5.27 cfs. \

Note: 12.39 ft is = R’{(S(/S4)-1}

13



Open Channel Flow Measurement:
Parshall Flume ( source: Viessman et al, 2005)

HD"'-I'-' /
n
—_— W; Orpen
open channel
channel ‘\
{ Converging Throat Diverging }
section section
Transiticmn Transition

g T \Qlctr surface

Flow Equation: Q = 4Wh1-°22W 0026 (3)

where Q = flow in cfs, W = throat width in feet and h = upper head with
respect to the bottom of the flume in feet. 14



Example 2: Parshall Flume

Problem:

Calculate the wastewater flow through a Parshall flume with a throat
width W = 5 feet and a free flowing upper head, h = 1.5 feet

Solution:

Flow Q = 4Wh?.522w %026
= 4 x 5 x1.51:522x5 026
= 38.1 cfs = 24.6 MGD

15



FLUID DYNAMICS

a) Law of Conservation of Mass - Equation of Continuity
> Inflow Mass = ) Outflow Mass.

* For steady flow of incompressible fluid (density constant) in
a full pipe or channel flow:

Q=ViA;=V,A; (4)

where,

Q = volumetric flow rate (cfs or m3/s)
V = average velocity at a flow section (ft/s or m/s)
A = fluid flow area at the flow section (ft2 or m?)
16



Example 3: Application of Equation of Continuity:
Full Pipe Flow

Given: Section 1: V., =3.0 ft/s and d,= 2.0 ft;
Section 2: d, = 3.0 ft.

Find the discharge and velocity at section 2.

Q =V,xA,=V,xA,

Q =3.0(3.14(2)%4) = 9.42 ft3/s or cfs
and
V, =Q/A,=9.42/(3.14 x 32/4) = 1.33 ft/s

Q, = Q =9.42 cfs

V .
FlOWQT A veea s 2 —>| Section 2
5 d=2f ™ VTS

1 d,= 3 ft

— 1

PipeFlow

A;

17



Problem 2: Application of Continuity — Open Channel

Given: An 8-m wide rectangular channel carries a flow under the following
conditions:

Section 1: Velocity V1= 4 m/s; depth, flow depth, y; =4m.
Section 2: Flow depth, y,= 3.2m.

Section 1 Section 2
Y1, V1 — YZ, V2
\ Rectangular Channel
Width B=8 m
Compute:
1. The discharge per unit width q = Q/B (m3/s/m):
a) 20 b) 15 c) 12 d) 16

2. The velocity V, (in m/s) at section 2:
a)6 b) 5 c)d d) 8

18



b) Law of Conservation of Energy for Steady Flow of an
Incompressible Fluid

Bernoulli Equation (or Enerqgy Equation):
Full Pipe Flow

Total energy head at any point is:

H =ply+z +V?%2g-h +h = constant (5)
where, H = total energy or head

p/ly = pressure head

y 4 = potential energy or elevation head

V?/2g = kinetic energy or velocity head

h, =sum of frictional (h;) and minor head losses (h, )

hy =energy added or subtracted from the fluid.

4 (positive for a pump or negative for a turbine).

All quantities expressed as head in feet or meters.
19



b) Law of Conservation of Energy (Cont..)
Bernoulli Equation (or Energy Equation):

Open Channel Flow

* At a cross-section:

H=y+z+ aV?%2g (6)

H = Total energy head (ft or m);
y = Flow depth (ft or m);
z= Elevation above datum (ft or m);

V = Average Velocity (ft/s or m/s);
o = Kinetic Energy Correction factor (normal range 1.0-1.3).

» Between two cross-sections (1-upstream and 2-downstream):

Hi—h_.=H; (7)
—— h,_ = Total Head Loss

20




Head Expressed as Enerqgy

Rate of energy (fluid power) of any term in the Bernoulli

Equation:
Power, P=yQh

Example:

(8) €=

Units
*SIl- N.m/s or J/s or W
*US: Ib-ft/s
Horse Power, HP

pressure head, p/y= 50 m (490 KPa)
discharge Q = 0.6 m3/s

Water power, P = 9806x0.6x50.0
= 294,180 N.m/s or J/s or W
= 294,180/776 = 379 HP

Note: 1 Horse Power, HP = 550 Ib-ft/s or 776 N.m/s

21




Example 4: Calculation of Head Terms - Bernoulli Equation

Given: Flow in a 24 inch pipe Q = 20.0 cfs.
Pressure, p = 60 psi (gage)
Elevation z = 500 feet.

Calculate the total head H expressed in feet, Ibf.ft/s and horse power.
Pressure Head, p/y = (60.0x144)/62.4 = 138.5 feet.

Elevation Head, z = 500 feet

Average Velocity, V = Q/A = 20.0 / (3.14(24/12)%/14) = 6.4 ft/s
Velocity Head, V?/2g = (6.4)?/(2x32.2) = 0.64 feet

Total Head, H = p/y + z + V?/2g = 138.5 + 500.0 + 0.64 = 639.14 feet
Total Rate of Energy or Power =y Q H = 62.4(20.0)(639.14)

= 797,646.72 |bf.ft/s = (797,646.72/550) = 1450 HP.

o a A O Dbd -~

22



Grade Lines
Full Pipe and Open Channel Flow

These lines can be plotted with respect to the centerline of a

pipe or channel bottom that is located at height z above an
arbitrary datum

a) Hydraulic Grade Line (HGL)
« Obtained by plotting the peizometric head:

(ply +2) (9)
b) Energy Grade Line (EGL)
« Obtained by plotting the total energy head:

H=ply +z+V22g (10)

Note: For Open Channel Flow pressure head, p/y = flow depth, y
23



Example 5: Application of Bernoulli Equation for Full
Pipe Flow: Pumping Between Reservoirs (Streeter, 1979)

A pump BC delivers 5.62 cfs. of oil (specific gravity = 0.762)
from Reservoir A to Reservoir D. Loss of energy from A to B

is 8.25ft or Ib-ft/s / Ib/s) and from C to D is 21.75 or ft (Ib-ft/s /
Ib/s).

Determine the head delivered by the pump to the water
system and its horse power. Plot the EGL.

D -

Reservoir A Reservoir D

/ 200 ft
............. v A Pump
50 ftT 5y C l

Pumping Oil Between Reservoir A to D. 24



Example 5: Bernoulli Equation for Full Pipe Flow: Pumping Between
Reservoirs (cont.)

D -

Reservoir A Reservoir D

200 ft

50 ft T

Solution

Pumping Oil Between Reservoir A to D.

Bernoulli Equation from A to D (with the datum at BC) with gage pressures
at A and D equal to zero (free water surface in the reservoirs) gives:

(pA/V + VA2/29+ ZA) +H pump H loss = (pD/Y + VDzlzg + ZD) (11)

or

(0 + negl. +50.0) +H - (8.25+21.75) = (0 + negl. + 200)

pump

* Pump Head = H = 180 ft. (or Ib.ft/s/Ib/s)

pump

- Pump Power =y QH = (0.762x62.4)x (5.62)x(180) = 48,100.366 Ib-ft/s

pump

* Pump Horse Power (or HP) = 48,100.366/550 = 87.46 HP 25



Example 5: Computation of EGL (cont.)

*EGL at A = 50.0 feet above datum at BC. /

‘Energy loss from A to B is 8.25 ft.

|
|
Reservoir A : Reservoir D

*EGL at B (before pump) = 41.75 ft.

‘Pump adds 180 ft. of energy

*EGL at C = 221.75 ft.

50 ft. T

Point A

Energy Grade Line (EGL)

D

Hg =41.75 ft
A I 200 ft

|
~ |
AT He = 221.75ft
B— TV 4O

Datum
Pump
Figure: Pumping Oil Between Re3ervoir A to D.

Point B Point C

*Loss of energy from C to D is 21.75 ft.

‘EGL at D =221.75 - 21.75 = 200.0 ft above datum at BC.

26



Problem 3: Pumping Problem

Given:

A pump BC delivers 5.62 cfs. of oil (specific
gravity = 0.762) from Reservoir A to Reservoir
D. Loss of energy from A to B is 8.25ft or Ib-ft/s
/ Ib/s) and from C to D is 21.75 or ft (Ib-ft/s /

Ib/s). LID _____

Determine: Reservoir A Reservoir D
1) Head delivered by the pump in feet if all Yoo b 20t
losses are neqglected is: 50ftT ' B Y /C

a)180 b)165 ¢)150 d) 205

2) The horse power of the pump is if all losses
are neglected is:

a)87.5 b)60.5 ¢)50.0 d)72.9

Pumping Oil Between Reservoir A to D.

3) The pressure at the intake point B of the
pump in psi is:

a)25.5 b)13.8 ¢)30.5 d)45.6

4) The pressure at the delivery end C of the
pump in psi is:

a)85.5 b)60.5 c)50.5 d)73.2 27



Problem 4: Application of Bernoulli Equation: Open Channel

Given: An 8-m wide rectangular channel carries a flow under the following
conditions:

Section 1: Velocity V1= 4 m/s; depth, flow depth, y, = 4m, elev. z; =100m.
Section 2: Flow depth, y,= 3.2m; elev. z, =100.1m
Assume K.E. correction factor a = 1.

Section 1 Section 2
Y1, V1 — Y2, V2
Compute:
\ Rectangular Channel
Width B=8 m

1. Total energy head, H, at section 1 (m):
a)50.5 b)120.2 «¢)104.8 d)110.5
2. Total energy head, H, at section 2 (in m):
a)66.5 b)104.8 c)118 d) 104.6
- 3. Energy Loss, h,between sections 1 and 2 (m):

a)0.5 b)0.2 c) 1.2

28



PIPE HYDRAULICS

FRICTION AND MINOR LOSSES

For real fluid flow the total head loss term, h; must
be specified.

*Total head loss includes two types of losses:

1. Friction loss, h,, and
2. Minor Loss, h_..

Total Head Loss, h; = (h;+ h_). (12)

29



Generalized Form of Frictional Formulas

« All frictional equations can be written in general
form as:

h,= KQx (13)

*This form of the head loss equation is very

convenient if K and x can be considered constant.

K and x are defined as follows for each of the
equations.

30



Generalized Form of Frictional Formulas —
Darcy-Weisbach

1) Darcy-Weisbach (full pipe flow): h; = KQX
« US Units with L = feet; D =feet; Q = cfs:
K= fL/(39.69 D°) (14a)
x=2.0 (14b)

f is pipe friction factor obtained from
Stanton-Moody’s diagram

S| Units with L = meters; D = meters; Q = m3/s:
K= fL/(12.09D%) (14c)

x =2.0 (14d)

31



Figure: Stanton/Moody Diagram for Friction Factors in
Circular Pipes (Streeter, 1979)
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Generalized Form of Frictional Formulas
- Hazen-Williams

2) Hazen-Williams (full pipe flow): h; = KQX

* U.S. Units with L = feet; D =feet; Q = cfs:
K =(4.73 L) / (C1.85 D4.365) (15a)
x= 1.85 (15b)

C is Hazen’s pipe
roughness coefficient

 S.I. Units with L = meters; D =meters; Q = m3/s:
K =(10.70 L) / (C1-85 D4-865) (15¢)
x = 1.85 (15d)

33



Generalized Form of Frictional Formulas
- Hazen-Williams (Cont.)

Notes: Hazen Williams Equation

* Next slide gives typical values of C.
* The higher the C value the newer the pipe.
« A smooth PVC pipe can have C value as high as 150.

« An old pipe with significant encrustation will have a C value 60 or
lower.

* Hazen’s C can be assumed constant for a range of velocities
between 6-9 ft/s.

A +5% or - 5% adjustment to C is recommended for velocities
outside 6-9 ft/s (positive adjustment for lower velocities).

34



Table: Typical Hazen Williams Pipe Roughness Coefficient, C.

Pipe Description Roughness
Coefficient, C

Extremely smooth, straight pipes; asbestos-cement 140

Very smooth pipes; concrete; new cast iron 130
Wood stave; new welded steel 120
Vitrified clay; new riveted steel 110
Cast iron after years of use 100
Riveted steel after years of use 95
Old pipes in bad condition 60 - 80

35



Minor Losses, h

* Minor losses associated with fittings such as valves, bends etc.

» Accounts for 10-20% of total head loss (some cases quite

significant).
Note: K’ depends on the fitting minor
loss coefficient k,,, and pipe size

* General form of minor loss equation: /

h = K V22g= K_Q%(2gA?) = K'Q?  (16)

™\

minor loss coefficient.

36



Minor Losses, h , (Cont.)

Table: Head Loss Coefficients K,, for
Various Fittings

Fitting K.,
Globe Valve (fully open) 10.0
Angle Valve (fully open) 5.0
Swing Check Valve (fully open) 2.5
Gate Valve (fully open) 0.2
Close Return Bend 2.2
Standard Tee 1.8
Standard Elbow 0.9
Medium Sweep Elbow 0.8
Long Sweep Elbow 0.6
Square Entrance 0.5
Rounded Entrance 0.01-0.05

Re-Entrant 0.8-1.0




Problem 5: Friction Loss and Minor Losses and

Coefficients

« A 12 inch pipe is 1500 feet long and has a Hazen’s roughness
coefficient C= 120 and carries water at a flow rate, Q = 5 cfs.

* Following fittings are installed: a) 1- Globe valve; b) 2-Standard elbows;
and c) 1-Gate valve.

Answer the following:

1) The Hazens loss coefficient, K = (4.73 L) / (C1-85 D4.869) js:

a) 10.5 b) 110.2 c) 1.0 d) 3.5
2) The combined minor loss coefficient, K’ =Y K,/(2gA?) is:

a) 2.5 b) 15.2 c) 25.6 d) 0.30
3) The Hazens head loss due to friction, hs =K Q85 | in feet is:

a) 19.6 b) 60.2 c) 120.0 d) 35.5

4) The total minor head loss, h,,, = K_ Q?/(2gA?) in feet is:

a) 29.6 b) 3.2 c) 7.5 d17.5



Analysis and design of
Full Pipe Flow Systems

Requires seven hydraulic variables:

Discharge, Q

Pipe length, L

Pipe size or diameter, D

Head loss due to friction, h; and minor loss, h,,

Pipe roughness, ¢, or relative roughness, /D

Fluid density, p

Dynamic viscosity, pu, (or kinematic viscosity, v = u/p).

NN~

Three types of simple pipe flow problems:

Type 1: Given Q, L, D, ¢, 4, p : solve for h,
Type 2: Given h.L, D, ¢, y, p : solve for Q
Type 3: Given hf, L,Q, g, M, p:solve forD

39



Analysis and design of Full Pipe Flow Systems

Pipes in series, parallel, branched and networks

 Many water utilities employ pipes in series, parallel or

branched or a combination of these.

 Analyzing these systems typically involves the use of the

following two equations:

1. Equation of continuity (law of conservation of mass)

2. Head loss equation (law of conservation of energy)

A

AV4

Reservoir
W ater

G T T T Ty T T T s 1‘_._
12 inch pipe 3
v 1000 feet

- C 8inch pipe 1000 feet I

> ¥ D 10 inch pipe
. &~
o _.Y_..
G

F ® 4 E
Proposed

Figure: Typical Pipe System with pipes in series and parallel

Parralel
6 inch Pipe

Y




1) Pipes in Series and Parallel : Equivalent K

Pipes in Series:

For pipes in series an equivalent K, can be determined
by summing the individual K vales of each pipe.

he =h,+h,+h; (Energy Equation) (17)
Q. =Q,=Q, =Q,=Q (Continuity Equation) (18)
K, =2ZK. = (K, + K, + K,) (19)

Pipes in Parallel:

An equivalent K_can be determined by summing the
reciprocals of the individual K values of each pipe.

he =h,=hy (Energy Equation) (20)
Q.= Q,+ Q4= Q (Continuity Equation) (21)

(1/K_)Vx = Z(1/K)1* = (1/K)V* + (1/K,)1/x (22)
e 1 2 4
41



Example 6: Equivalent Pipe for Pipes in Series and
Parallel

For the pipe system problem shown in the Figure below answer the
following questions. Use Hazen- Williams method assuming all
pipes have a Hazen C = 120.

A v e
1000 ft 2 T
12 inch pi
Resenair v 100 et > H=200 ft
Water -~ C 8inchpipe 1000 feet
B Y D 10inchpipe
A==
\; ___________
G
X 4 E
Proposed
Pamralel
Figure 5.2: Pipe System 6 inch Pipe

1. Find the discharge Q for H = 200 feet assuming the system is
composed of Pipes 1, 2 and 3 in series only.

2. For the same system find the discharge when the parallel pipe 4

is also included. s



Example 6: Equivalent Pipe for Pipes in Series (cont.)

Solution to part (1)
A v 1
Step 1: Find Hazen K for each pipe: o 3
Resendr \J inchii
K, = (4.73 x 1000) / {120"#5x (12/12)*$7} = 0.67 vee me
E
K, = (4.73 x 1000) / {12085 x (8/12)*¢7} = 4.852 ] = =2
F 4 E
K, = (4.73 x 1000) / {12085 x (10/12)*87} = 1.638 i
Figure 52 PipeSygem GinchFpe

K, = (4.73 x 1000) / {12085 x (6/12)*87} = 19.697

Step 2: Find equivalent K (Slide 41 — Equation 19) for the three pipe

in series 1, 2 and 3:
K, = ZK = (K, + K, + K,) = 0.674 + 4.852 + 1.638 = 7.164

Step 3: Determine the discharge using head loss equation:

h, = K Q"85
200 =7.164 Q'-35
solving for Q, Q = (200/7.164)(1/1:85)

Q = (27.917)(0-54) =6.05 cfs
43



Example 6 : Equivalent Pipe for Pipes in Parallel (cont.)

A < 1
1000 ft 2
12 inch pi
Reservoir mcvplpe 1000 feet ’
- C 8inch pipe 1000 feet
Water B —> v D 10 inch pipe
E “~
My
G
FR 4 E
Proposed
Parralel
Figure 5.2: Pipe System 6 inch Pipe

Solution to part (2):

Step 1: First Combine the two parallel pipes 2 and 4 (see figure
above) into one equivalent pipe. From Slide 41 — Equation 22:

(1/Ke)1/1.85 = (1/4_852)1/1.85 + (1/19.697)1/1'85
= 0.426 + 0.20 = 0.626
Ke = {1/0.626}185 = 2.379

Step 2: Using pipe 1, the equivalent pipe from step 2 and pipe 3 in
series solve for discharge as in part (1)
Ke = ZK. = (K, + K, + K;) = 0.674 + 2.379 + 1.638 = 4.691
he — KeQ1.85

200 =4.691 Q185
Q= 7.60 cfs. 44



Problem 6: Pipes in Series

Problem Statement:

Water discharges from a reservoir into the pipe system.

Pipes 1, 2 and 3 are in series Hﬁsen’o"

Hazen K, =1.5; K,=4.0; K; =1.7; e B T -

Total length of all three pipes is 3000 feet.
W
\—-

Answer the following:
1) The equivalent K, for a single pipe to replace pipes1, 2 and 3 is:

a)55 b)7.2 )85 d)4.0

2) If the equivalent pipe has the same total length L = 3000 feet and is made of
PVC (Hazen C = 150), the diameter, d., of the equivalent pipe in inches is:

a)6.5 b)125 c)85 d)9.8

3) The discharge Q from the reservoir in cfs is:

a)55 b)3.2 )86 d)2.9
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2) Branched Pipe System

The following hydraulic conditions must considered:

The hydraulic head, h, is equal to the elevation z above the datum
if the water level in the reservoirs, A, B and C have a free surface
(the gage pressure, p, is zero).

The friction equation, h, = KQ*, must be satisfied in each pipe.

Continuity equation for flow at junction J must be met in two
possible ways based on the hydraulic grade (p/y + z) at junction J.

1) Flow from Res. 1 can flow into Res. 2 and 3: Q, = Q, + Q,

2) Flow from Res. 1 and 2 can flow into Res. 3: Q, + Q, = Q,

Junction J is an internal point in the pipe and the pressure is
unknown

The change in velocity head (V?/2g) between the reservoirs and
junction, J, is small and can be neglected. w

\ ' Reservoir B
Junction J
46

Reservoir C

Branched Pipe System



Example 7: Branched Pipe System

Given:

Reservoir A: p./y +z,=2z,=30 m;
Reservoir B: p,/y +z,=2,=18 m;
Reservoir C: p,/y+z,=2z, = 9m;

<

Note: Gage pressures p4, p2 and p3
at the top of
Reservoirs A, B and C are zero

Pipe Diameters: D, =1.0 m ; D,=0.45 m; D; = 0.60
Pipe Lengths: L, =3000 m; L, =600 m; L; = 1000m
Hazen C for all pipes C = 130 (new cast iron pipe)

1

—

30m Junction J

r:‘i

Reservoir C
9m

Pipe 3 (D3, L3)

Pipe 1 (D1, L1)
/

Pipe 2 (D, L,)

Reservoir B

Datum




Example 7 : Branched Pipe System (cont.)

Reservoir A 1

Solution: Pipe 1(Dy L)
2 Reservoir B
Step 1: -

Junction J Pipe 2 (D, L)
3

Calculate Hazen’s K values for each pipe
(refer to Eq. 15c, Slide 33):

Pipe 3 (D3, L3)
Reservoir C Datum

K, =10.7 L,/(C"85D,487) = (10.7x 3000)/(130'85 x 1.0487) = 3.942
K, = (10.7x 600)/(130"85x 0.45487) = 30.552

K, = (10.7x 1000)/(130"85x 0.6487) = 15.812

Step 2:
Assume h; for junction J =20 m

Head loss in pipe 1 = h,,= (p,/y + z,) — (p,/y + z;) =30-20 =10 m (flow A to J)
Head loss inpipe2=hyp =20-18=2m (flow J to B)
Head loss inpipe3=h;z =20-9=11m (flow J to C)
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Example 7: Branched Pipe System (cont.)

Step 3:
Compute Discharges into Junction J

Discharge from reservoir A into junction J (Note: HG at 1 > HG at J):
Q, = (h;/K,)"1-85 =(10/3.942)"1-8 =1.654 m3/s (inflow)
Q, = (2/30.552)11-85 = 0.229 m3/s (outflow)
Q;=(11/15.812)"185 = 0.821 m3/s (outflow)

Step 4:

Calculate the deficit as:
3, = Q, - (Q,+Q,) = (1.654) - (0.229 + 0.821) = 0.604 m°/s

Reservoir A'

Reservoir C

Figure 5.3: Branched Pipe System 49



Example 7 : Branched Pipe System (cont.)

Step 5: Repeat Steps 2-4 using another hydraulic head for
junction J.

ReservoirA'
Assume the HG of J=z,+ p,/y=15m \ g R

Junction J
Head loss in pipe 1: h.,= 30 — 15 = 15m; (flow A to J) '/

Head loss in pipe 2: h,, =18 — 15 = 3 m; (flow B to J) Reservoir C

Figure 5.3: Branched Pipe System

Head loss in pipe 3: his = 15-9 =6 m; (flow J to C)
Compute Discharges into junction J (Note: HG at 1 > HG at J)

Q; = (hu/Kq)¥185 = (15/3.942)11:85 = 2.059 m3/s (inflow)
Q, = (3/30.552)11-85 = 0.285 m3/s (inflow)
Q; = (6/15.812)11:85 = 0,592 m3/s outflow)

«Calculate the deficit :

8, = (Q1 + Q,) - Q3) = (2.059 + 0.285)-0.592 = 1.752 m3/s
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Example 7 : Branched Pipe System (cont.)
Step 6:

Plot flow deficit at junction J, 6 versus Hydraulic Grade at J,
pj/'Y + 2z

Answer:

From the graph the flow deficit to Junction J is zero at p,/y + z; =23 m.

Figure 5.5: Flow Deficit Versus Hydraulic Grade at Junction J

Final Solution
hj=23mats=0

Flow Deficit at Junction J
o
o)
|

()]

0o - O O - AN A A A ADAA AL AL AT AO AN DA D)D) NDYDNDYA O
O 7/ O IJIUTITIZ1914 10101710194V Z 12225244

o
N
d
N -
G
B
(6)]

Hydraulic Grade at Junction J

o1




3) Looped Pipe Systems:
Hardy Cross Method
This method involves:

1. Assuming an initial distribution of flows in
each pipe satisfying continuity at each node;

2. Determining the head losses in each pipe;

3. Making successive corrections, o, to the flows
in each pipe until the total head loss around a
loop is zero.

=- {(ZKQ)/(ZKxQ*'} =-Zh/(xZh/Q)  (23)

Note: For Hazen Williams equation x =1.85; h,= Y KQ*
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Example 8: Pipe Network Analysis Using Hardy
Cross Method

For the welded steel pipe network determine the discharges
in each pipe. What are the pressures at each node assuming
that all nodes are at the same elevation, z. The pressure head

at A is 50 feet.

0.6 cfs
QBc =0.2cfs 0.8 cfs
: 4
—
1.0 cf / l 0.2 cfs
1.8 cf > >
A 0.8 cfs T C 0.6 cfs | E
0.4 cfs 0.8 cfs
Loop 1 Loop 2

Figure : Pipe Network with Two Loops
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Example 8: Pipe Network Analysis Using Hardy Cross Method (Cont.)

Table: Hardy Cross Method - Iteration 1

1) (2) 3) (4) (5) (6) (7)
Loop Pipeline K Q,(cfs) | h.=KQ,!8 | h/Q, | Corrected,

(ft) Q,(cfs)

1 AB 14.25 +1.0 +14.25 14.25 +0.9
BC 7.12 +0.2 +0.36 1.80 +0.185

AC 14.25 -0.8 -9.43 11.79 -0.9

> =+5.18 > =27.84
I N R A D
2 BD 14.25 +0.8 +9.43 11.79 +0.715
DE 7.12 +0.2 +0.36 1.80 +0.115
CE 14.25 -0.6 -5.54 9.23 -0.685
BC 7.12 -0.2 -0.36 1.80 -0.185
> =+3.89 2. =24.62

o4




Example 8: Pipe Network Analysis Using Hardy Cross Method
(cont.)

Calculate loop flow corrections using the sums from
Columns 5 and 6 of Slide 54: Flow Corrections after

Iteration 1 . /m
5, =-5.18 / (1.85x27.84) = -0.10 =7
5,= - 3.89 / (1.85x24.62) = -0.085 cfs wf |V b

L “l thch “tE 0.8 cfs
adjusted QAB =+1.00 - (010) = 0.9 cfs loop!  Lloop2

Figure : Pipe Network with Two Loops

adjusted Q. =-(0.2-0.10) — 0.085 = - 0.185 cfs

™~

Correction with respect to Loop 1 Final Correction with respect to Loop 2
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Example 8 : Pipe Network Analysis Using Hardy Cross Method (cont.)

Table: Hardy Cross Method — Iteration 2

(1) (2) (3) (4) (5) (6) (7)
Loop | Pipeline K Q,(cfs) | h.=KQL8(ft) | h/Q, | Corrected
Q,(cfs)
1 AB 14.25 +0.9 +11.73 13.03 +0.9
BC 7.12 +0.185 +0.31 1.68 +0.185
AC 14.25 -0.9 -11.73 13.03 -0.9
> =+0.31 2. =27.74
N N I R I R
2 BD 14.25 +0.715 +7.66 10.71 +0.715
DE 7.12 +0.115 +0.13 1.13 +0.115
CE 14.25 -0.685 -7.08 10 .34 -0.685
BC 7.12 -0.185 -0.185 1.68 -0.185
2. =+0.40 2. =+0.40
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Example 8 : Pipe Network Analysis Using Hardy Cross Method (cont.)

Flow Corrections after Iteration 2:

5, = - (0.31) / (1.85)(27.74) = - 0.006 (negligible)
5,= - (0.40) / (1.85)(23.86) = - 0.009 (negligible)

The final corrected flows are shown in Column 7 of Slide 56.

Table: Final Flows and Pressure Heads

(1) (2) (3) (4) (5)
Pressure Head
< (feet)
Flow Head Loss Nodes
Pipeline Q. hi= KQ"#
(cfs) (feet)
AB +0.900 +11.7 A Given 50.0
BC +0.185 +0.3 B 50 - hag = 38.3
AC -0.900 -11.7 C 50 — hac =38.3
BD +0.715 +7.7 D hg - hgp = 30.6
DE +0.115 +0.1 E hc - hce =31.2
CE -0.685 -7.1

0.6 cfs

Qgc = O.ZcfsB 08¢fs /D'
_’
1.0 ¢ / l l0.2 cfs
18¢fs - -
A 08cfs T C™ o6cts_| E

0.4 cfs 0.8 cfs

Loop 1 Loop 2

Figure : Pipe Network with Two Loops
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Open Channel Hydraulics

Froude Number, F,

Widely used as an indicator of the state of flow in Open
Channels.

F. <1 subcritical flow
F. > 1 supercritical flow
F.=1 critical flow in a channel

F. =V /(gD)% = Q/{A(gD)%%} = Q/(gA3/T)%> (24)

where, V is the average velocity,
Q is the discharge, and
D is the hydraulic depth = A/T.
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Example 9: Froude Number, F,: Rectangular Channel

Special Case

Froude Number, F, = V/(gD)?%5>
= Vi(gy)®* = (Q/By)/(gy)°*
= (aly)/(gy)°®

F. = al(gy®)*®

f

5 ft

v

—

20 ft

—

Given: Q = 400 cfs; B =20 ft; y = 5 ft; g = 400/20 = 20 cfs/ft;
Find: F, = 20/(32.2(5)3)%5 = 0.32 < 1 (subcritical flow)
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Critical Flow In Open Channel

« Two methods to calculate critical depth, y.:

« Analytical method where a trial and error
procedure can be used to solve for y,
(see example in Appendix)

* Graphical method: Use a Design Chart
(Slide 62)

(easier to use than the Analytical method)

Graphical method is illustrated in the following example.
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Computation of Critical Depth

*For Critical Flow, Froude Number:

F, = V/ {gD/a}?-% = Q /{A(g(A/T)/a)?-} = Q {(gA3T)la}?-> =1  (25)

Separating Q from the other variables, section factor in critical
flow:

Z. = (A3T)% = Q/(g/a)0- (26)
_~
Given Q, Eq. 26 can be used to calculate the section factor Z. and
critical depth, y., since A and T are functions of flow depth
(analytical method or use Design Chart — Slide 62)

Special Case: For a rectangular channel of unit width Eq. 22

reduces to: = . —
2 — 2 3N iven discharge/unit width, q

Fre = g“{(g/a)y. }? solve for critical depth , yc (27)

or y.=[a?%(gla)] ' analytically from this equation. | (28)

where, g = discharge per unit width = Q/B. 61



Slide
62

Figure: Design Chart for Determining the Critical Depth, y, (reproduced from Chow, 1959)
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Example 10: Computation of Critical Depth: Design
Chart Method

Compute the critical depth and velocity in a trapezoidal
channel carrying a discharge, Q, of 400 cfs. The channel has
a bottom width, B = 20 feet and side slope z=2 (i.e. 2H:1V).
Assume a = 1.10.

Solution: See Equation 26 Slide 61

1. Section factor in critical flow /

Z.= Q/(g/a)?> =400 (32.2/1.1)°-°=73.93
2. Compute the dimensionless value,
Z./B%5=73.93/(20)%°=0.0413
3. From the Design Chart for Z. / B2°=0.0413
y/B = 0.11

or critical depth, y.=0.11 (20) = 2.22 feet
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Uniform Flow In Open Channels

* The flow depth, water area, velocity and discharge
in the channel are constant.

* The flow depth is called uniform flow depth or
normal depth, y,.

« Uniform flow exists when gravitational forces are
balanced by frictional forces.

* Friction slope, S;= channel bottom slope, So.

- Basis for channel design.

Note: If a channel is allowed to flow without any physical obstructions or
changes in channel cross section, the flow would occur under uniform flow
conditions.
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Friction Formula In Uniform Flow

Manning Formula:

‘Most widely formula in design of open channels.

Note: friction slope, S = channel slope,So

/

V = (1.49/n) R¥3§,"2 (US Units) (29)
or
Q = (1.49/n) ARZ3S,"2 (US Units) (30)

*In Sl units the constant 1.49 is replaced with 1.0.
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Manning Roughness Coefficient, n

Table: Average Values of the Manning Roughness, n

Boundary Material Manning, n
Planed Wood 0.012
Unplaned Wood 0.013
Finished Concrete 0.012
Unfinished Concrete 0.014
Castiron 0.015
Brick 0.016
Riveted Steel 0.018
Corrugated Metal 0.022
Rubble 0.025
Earth 0.025
Earth with stones or weeds 0.035

Gravel 0.029




Computing Channel Normal Flow Depth, y,
(or Uniform Flow Depth, y,)

Method 1: Analytical method (Trial and Error):

- Method based on section factor AR?3 = nQ/(1.49S,"?)
(Note: In Sl units 1.49 is replaced with 1.0)
*Solve for y,, expressing A and R in terms of flow depth.

(See Appendix for details)

Method 2: Method of Design Chart (Slide 68)

* Design Chart is used for computing normal depth, y,

* Procedure requires a dimensionless ratio AR%3/B83

ARZ3 js Section Factor /
B is channel bottom width
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68 Figure 6.1: Design Chart for Determining Normal or Uniform Flow Depth, y, (Chow, 1959)
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Example 11: Computation of Normal Depth, y_

A trapezoidal channel (bottom width B = 20 feet, side slope z

= 2, slope Sy = 0.0016, and n = 0.025) carries a discharge, Q =
400 cfs.

Find the normal depth, y,,, and the average velocity, V.

«— _

T = 44 feet

Z= T zZ=

B = 20 feet

Figure: Channel Cross-Section
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Example 11 : Computation of Normal Depth, y, (cont..)

Design Chart Method:

*Step 1: Compute the Section Factor in Uniform Flow
AR?3=nQ/(1.49S,"2)=(0.025 x 400)/(1.49 x 0.0016"2) = 167.7

*Step 2: Compute the dimensionless ratio:

AR?3/B®3 =167.7/20%2 =0.0569

Step 3: Using trapezoidal channel section with a side slope z = 2
curve (Slide 68) and for AR?3/B%3 = 0.0569,

y/B =0.168

or Normal Depth y, = 0.168 x 20 = 3.36 feet
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Problem 7: Computation of Section Factor, Uniform

Given:

and Critical Flow Depths

Uniform flow conditions.

Concrete lined rectangular channel (manning’s n = 0.015)

Longitudinal slope, Sy= 0.004 m/m

Bottom width, B = 8.25m;

AR 2/3 = 1/2
Design flow Q = 150 m3/s / Note: AR “~ = nQ/S,

in Sl units

1) the section factor in uniform flow, AR 283 js:
a)50.2 b)35.6 c)45.6 d)64.2
2) the uniform or normal depth, y, in meters:
a) 2.5 b)3.5 «¢)3.0 d) 4.2
3) the critical depth, y., in meters:
a) 2.8 b) 3.2 c) 4.0 d) 3.8
4) state of flow:

a) subcritical b) supercritical c) critical

d) none of these
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Thank you for listening to the
presentation.

Good luck on the P.E. Exam

QED
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Answers to Problems

Problem 1(a) (Slide 9):
Problem 1(b) (Slide 10):
Problem 2 (Slide 18):
Problem 3 (Slide 27):
Problem 4 (Slide 28):
Problem 5 (Slide 38):
Problem 6 (Slide 45):
Problem 7 (Slide 71):

1) c;
1) b;
1) d;
1) c;
1) c;
1) c;
1) b;
1) b;

2) b;
2) c:
2) b.
2)d;
2) d;
2) d;
2) c;
2) c;

3)d; 4)a
3) d.
3)b; 4)d.
3) b.
3)a; 4)c.
3) d.

3)b; 4)b.
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APPENDIX
Open Channel Flow



Analytical Methods for Computing
Critical and Normal Depths

Involves a trial and error procedure

76



Example: Computation of Critical Depth
Analytical Method

Compute the critical depth and velocity in a trapezoidal channel
carrying a discharge, Q, of 400 cfs. The channel has a bottom width, B
= 20 feet and side slope z=2 (i.e. 2H:1V). Assume a = 1.10.

Solution:

Step 1: Compute section factor Z_:
Z_ = Q/(g/a)®> =400/(32.2/1.10)%° = 73.93

Step 2: Since Z_.= AVD; or Z.2= A2D, substituting for A and D= A/T in
terms of depth for a trapezoidal channel gives:

{y (20 + 2y)}*{y (20 + 2y) / (20 + 4y)} = Z_ 2= (73.93)? = 5465.84

Step 3: Solving Eq. above by trial and error gives
the critical depth, y = 2.22 feet.
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Methods for Computing Uniform Flow Depth
(or Normal Flow Depth, y,) in a Channel

Analytical method (Trial and Error)

‘Method based on section factor AR??3

*Solve for y, expressing A and R in terms of flow depth.
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Example: Computation of Normal Depth, y,
Analytical Method (Trial and Error):

Step 1: Compute the Section Factor in Uniform Flow:
AR?Z? = nQ/(1.49S,"2) =( 0.025 x 400)/(1.49 x 0.0016"2) = 167.7

Step 2: Substitute equations for water flow area A and Hydraulic radius, R:

(20 + 2y)y x { (20 + 2y)y / (20+2y(5)°-°) } 23 = 167.7

Step 3. Solving for flow depth y by trial and error gives:
Normal depth, y, = 3.36 feet

Step 4: Compute average velocity, V and other hydraulic variables:
Flow area A = (20 + 2x3.36) x 3.36 = 89.80 ft?
Av. Velocity, V = Q/A = (400/89.80) = 4.45 ft/s
Top width, T = (B + 2 y(1+22)%5) = (20+2x(3.36)x(5)%-°) =35.026 feet

Hydraulic depth, D = A/T = 89.80/35.026 = 2.563 feet
Froude Number, Fr = V/(gD)®%3

= 4.45/((32.2x2.563)%-°) = 0.49 (subcritical flow)
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