P.E. Civil Exam Review: Hydrology

N.R. Bhaskar

Email: bhaskar@louisville.edu Phone: 502-852-4547

ASCE | KNOWLEDGE & LEARNING

Table of Contents

Topics:

- 1) Hydrologic Cycle and Hydrologic Budget
- 2) Rainfall: *Historical Storms Design Storms*
- 3) Abstractions: *Rainfall Excess*
- 4) Runoff Methods:

Small Catchments:Rational MethodMidsize Catchments:SCS TR55 Method
Unit Hydrograph Method

Appendices:

- A: Hydrologic Design Components for SCSTR 55
- **B: Hydrologic Routing**
- **C:** Groundwater: Well Hydraulics
- **D: Unit Hydrograph and Additional examples**

Hydrologic Cycle and Terms

• Precipitation/Rainfall.

Discharge of water from the atmosphere.

Rainfall excess.

Rainfall minus *interception depression storage* evaporation *infiltration*

• Runoff.

Rainfall that appears in surface streams

(includes subsurface quick return flow).

Surface runoff.

Runoff which travels over the soil surface to the nearest stream.

Commonly Used Units

- Acre-foot: Volume of water equal to 1 ft. depth of water covering 1.0 acre area = 43,560 ft³.
- Cfs: or <u>cubic feet per second</u> (ft³/s) unit of discharge.
- Cumec: or <u>cubic meters per second</u> (m^{3/}s) unit of discharge .
- Cfs-day (sfd): Volume from a flow of 1 cfs for 1-day (24 hours)
 = 86,400 cubic feet or 1.98 acre-feet.

Hydrologic Budget

Continuity Equation (Law of Conservation of mass):

• Can be applied to:

Watershed System
 Reservoir System

Hydrologic Budget: Watershed System

Example 1: Watershed Runoff Computation

Given:

- 1) Watershed size above a gage site along a river = 50 sq. mi;
- 2) Watershed annual rainfall = 60 inches/yr;
- 3) Assume Runoff = 55% of annual rainfall (i.e. 45% losses)

Compute:

- 1) Volume of Annual Runoff from the watershed in acre-feet and sfd
- 2) Rate of runoff in cfs

Hydrologic Budget: Reservoir System

Example 2: Reservoir Storage Computation

Given: During a 30 day period:

- 1) Streamflow into the reservoir, $Q = 5.0 \text{ m}^3/\text{s}$
- 2) Water supply withdrawal, W = 136 mgd
- 3) Evaporation from the reservoir surface = 9.40 cm
- 4) Average reservoir water surface = 3.75 km²
- 5) Beginning reservoir storage, $S_1 = 12,560$ ac- ft

Continuity Equation: $S_2 = S_1 + Q - W - E$ (all volume units)

Note: Time period $\Delta t = 30$ days = (30x86,400) sec

Hydrologic Budget: Reservoir System **Example 2: Reservoir Storage Computation (Cont.)**

Compute: The month-end reservoir storage, S_2 in m³ and ac- ft.

1)
$$S_1 = (12,560 \text{ ac- ft})$$

2) $Q = (5.0 \text{ m}^3/\text{s})(30 \text{ days})(86,400\text{s}/\text{day})$
 $= 12,960,000\text{m}^3 (35.314 \text{ ft}^3/\text{m}^3)(2.296\text{x}10^{-5} \text{ ac-ft}/\text{ft}^3) = 10,508 \text{ ac-ft}$
3) $W = (136\text{x}10^6 \text{ gal}/\text{day})(0.003785 \text{ m}^3/\text{gal})(30 \text{ days})$
 $= 15,442,800 \text{ m}^3 (35.314 \text{ ft}^3/\text{m}^3)(2.296\text{x}10^{-5} \text{ ac-ft}/\text{ft}^3) = 12,521 \text{ ac-ft}$
4) $E = (3.75\text{km}^2)(1\text{x}10^6 \text{ m}^2/\text{km}^2)(9.4 \text{ cm}) (0.01 \text{ m/cm})$
 $= 352,500 \text{ m}^3 (35.314 \text{ ft}^3/\text{m}^3)(2.296\text{x}10^{-5} \text{ ac-ft}/\text{ft}^3) = 286 \text{ ac-ft}$
5) $S_2 = S_1 + Q - W - E \text{ (for } \Delta t = 30 \text{ days}) \text{ ac-ft}$
 $= (12,560 + 10,508) - (12,521 + 286)$
 $S_2 = 10,261 \text{ ac-ft} (\text{loss of storage}) \text{ (Note: } S_1 = 12,560 \text{ ac-ft})$
Note: Change in storage, $\Delta S = S_2 - S_1 = (10,261-12,560) = -2299 \text{ ac- ft} (\text{loss})$

8

Problem 1: Reservoir Storage Computation

Given:

- Reservoir located at the outlet of a 150 sq. mile watershed
- Mean annual rainfall, P = 38 inches (use as inflow into reservoir)
- Mean annual watershed runoff (flow into reservoir), Q = 13 inches
- Mean annual reservoir evaporation, E = 49 inches
- Mean daily withdrawal from reservoir (draft), D = 100 MGD
- Mean reservoir surface area, A_S = 4000 acres

(Note: 1.0 sq. mi = 640 acres; 1.0 ac-ft = 43,560 ft³; 1.0 MGD = 3.07 ac-ft/day; 1.0 ft³ = 7.48 gal; 1.0 cfs = 1.9835 ac-ft/day))

Using a time frame, Δt = 1 year (365 days) determine:

1. Volume of water evaporated from lake in acre-ft/yr:

a) 16,333 b) 24,586 c) 392,000 d) 55,600

2. Watershed runoff or inflow into reservoir in acre-ft/yr:

Note: Watershed area not adjusted for reservoir area of 4000 acres

Pr	oblem 1: Reserv	oir Storage (Computation	(cont.)
3.	Watershed runoff or i	inflow into reserv	oir in cfs:	
	a) 250.8	b) 143.7	c) 550.0	d) 85.6
4.	Volume of rainfall in	put, P, to reservo	ir in acre-ft/yr	
	a) 152,000	b) 304,000	c) 12,667	d) 85,000
5.	Mean draft, D in ac-f	t/yr:		
	a) 100,000	b) 112,055	c) 185,250	d) 265,500
6.	Net loss/gain of rese	ervoir storage, ΔS	in acre-ft/yr:	
	a) -16,280	b) 12,500	c) -11,721	d) 0

Computation of Critical (Maximum) Reservoir Storage

Graphical Method:

Mass Curve Analysis (Rippl Method)

 Analytical Method: Sequent Peak Method

Example 3: Estimation of Critical or Maximum Reservoir Storage (Capacity)

Problem: The following mean monthly flows were measured in million gallons/month (MG/month) at a gage in a river during a 13 month critical drought period. Determine the maximum reservoir storage required in MG to provide a constant draft of 35 MG/month (Note: 1.0 MGD = 1.55 cfs or 1.0 MG/month = 46.5 cfs based on 30 days)

	Inflow, Q
Month	MG/month
1	40
2	54
3	90
4	10
5	7
6	8
7	2
8	28
9	42
10	108
11	98
12	22
13	50

Example 3: Analytical Solution (Sequent Peak Method) (cont.)

	Inflow, Q	Draft, D	Cum. Q	Cum. D	Cum Q - Cum D
Month	MG/month	MG/month	MG/month	MG/month	MG/month
1	40	35	40	35	5
2	54	35	94	70	24
3	90	35	184	105	79 P1
4	10	35	194	140	54
5	7	35	201	175	26
6	8	35	209	210	-1
7	2	35	211	245	-34
8	28	35	239	280	-41 T1
9	42	35	281	315	-34
10	108	35	389	350	39
11	98	35	487	385	102 P2
12	22	35	509	420	89 T2
13	50	35	559	455	104 P3

Required Reservoir Storage = Max{ (P1-T1) or (P2 - T2) }

- = (79-(-41)) or (102 89)
- = 120 MG

Two types of rainfall events:

1) HISTORICAL:

- Spatially and temporally averaged hyetographs rainfall events
- Based on measured rainfall depths using rain gages at a point

2) DESIGN (or SYNTHETIC):

- Standardized temporal rainfall distributions (design storm hyetographs)
- Based on regionalized historical rainfall data for select duration and frequency

Design Rainfall Intensity-Duration-Frequency (IDF)

Requires the following:

1) Frequency (F_R) or average return period (T) (see Appendix A)

Example: For T = 100 years, $F_R = 1/T = 1/100 = 0.01$ or 1%

3) Design rainfall depth = (intensity x duration)

Based on T and t_d

- a) NWS TP 40 Regionalized Rainfall
- b) From Intensity Duration Frequency (IDF) Curves or Equations

4) Time (or temporal) distribution of rainfall depth - Rainfall Hyetograph

5) Spatial variation rainfall depth over a catchment

Handled using an average rainfall depth

Figure: Regionalized IDF Map for IDF Equations

Map showing areas of approximately similar rainfall characteristics.

Table: Regionalized IDF Equations

Precipitation formulas for various parts of the United States (i, mm/h; t, min)Frequency, Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 vears $i = \frac{5230}{t+30} \quad i = \frac{3550}{t+21} \quad i = \frac{2590}{t+17} \quad i = \frac{1780}{t+13} \quad i = \frac{1780}{t+16} \quad i = \frac{1730}{t+14} \quad i = \frac{810}{t+11}$ 2 $i = \frac{6270}{t+29} \quad i = \frac{4830}{t+25} \quad i = \frac{3330}{t+19} \quad i = \frac{2460}{t+16} \quad i = \frac{2060}{t+13} \quad i = \frac{1900}{t+12} \quad i = \frac{1220}{t+12}$ 5 $i = \frac{7620}{t+36}$ $i = \frac{5840}{t+29}$ $i = \frac{4320}{t+23}$ $i = \frac{2820}{t+16}$ $i = \frac{2820}{t+17}$ $i = \frac{3100}{t+23}$ $i = \frac{1520}{t+13}$ 10 25 $i = \frac{8300}{t+33}$ $i = \frac{6600}{t+32}$ $i = \frac{5840}{t+30}$ $i = \frac{4320}{t+27}$ $i = \frac{3300}{t+17}$ $i = \frac{3940}{t+26}$ $i = \frac{1700}{t+10}$ 50 $i = \frac{8000}{t+28}$ $i = \frac{8890}{t+38}$ $i = \frac{6350}{t+27}$ $i = \frac{4750}{t+24}$ $i = \frac{4750}{t+25}$ $i = \frac{4060}{t+21}$ $i = \frac{1650}{t+8}$ 100 $i = \frac{9320}{t+33}$ $i = \frac{9520}{t+36}$ $i = \frac{7370}{t+31}$ $i = \frac{5590}{t+28}$ $i = \frac{6100}{t+29}$ $i = \frac{5330}{t+26}$ $i = \frac{1960}{t+10}$

Example 4: Estimate the 100-yr, 1 hour design rainfall for Louisville, KY

Example 4: Estimate the 100-yr, 1 hour design rainfall for Louisville, KY (cont.)

b) From the IDF Map and Table (Slides 17 and 18) Louisville is in Region 3.

Regional IDF equation for T =100 yr :

i (mm/hr) = {
$$7370/(t+31)$$
 } where t = t_d in minutes

i = 7370/(60+31)

```
= 80.989 mm/hr
```

```
= 3.2 in/hr
```

Rainfall Depth = 3.2 in

From Louisville IDF Curve P = 2.80 in (see previous slide)

 Note the difference between using a locally developed IDF curve versus using a regional equation

Problem 2: Using IDF Curves: Chicago, Illinois (Chow, 1988)

Intensity-duration-frequency curves of maximum rainfall in Chicago, U. S. A.

Determine:

1. The 100-year, 60 min rainfall intensity for Chicago in in/hr is:

a) 2.5; b) 3.2; c) 3.0; d) 6.0

- 2. The 100-year, 30 min rainfall intensity (in in/hr) using the Chicago IDF Equation i (mm/hr) = 7370/(t+31) (from region 3; see slides 17 and 18):
 a) 4.5; b) 3.5; c) 2.8; d) 4.8
- 3. The 100-year, 30 min rainfall depth in inches is:

 a) 3.0;
 b) 4.0;
 c) 2.4;
 d) 1.5

 21

Abstractions

Abstractions (Cont.)

- Main Abstraction Process is Infiltration
- Interception and Depression Storage occur in the early stages of event and can be considered as initial losses
- Some methods for infiltration:
 - Infiltration Indices: **•** index
 - Runoff Coefficients: Rational Method C
 - SCS Curve Number Method, CN
 - Infiltration Capacity Curves: Horton's

Example 5: Rainfall Excess and Volume of Direct Runoff Given:

- A direct runoff hydrograph from a 7.0 sq. mi watershed.
- A uniform loss rate, $\Phi = 0.50$ in/hr (or 0.25 in/1/2hr).
- Calculate volume of direct runoff in inches.
- Show volume of direct runoff = volume of rainfall excess

Example 5: Rainfall Excess and Volume of Direct Runoff (cont.)

Solution:

Volume of Rainfall Excess, Pe

= {(2.70-0.50)x0.5}+ {(4.30-0.50)x0.5} + {(4.1-0.50)x0.5} = 4.8 inches

Volume of Direct Runoff, $V_d = \sum Q_n x \Delta t$

= $(430 + 1920 + 5300 + 9130 + 10625 + 7830 + 3920 + 1845 + 1400 + 830 + 310) \times 0.5$ = $(43,540\times0.5) = 21,770 \text{ cfs-hrs}$ = $(21,770 \times 3600) = 78,372,000 \text{ ft}^3$

Direct Runoff Depth, rd (inches)

= (direct runoff volume in ft^3 / drainage area in ft^2) = 78,372,000/(7x5280²) = 0.40 ft. = 4.8 inches

Note: Rainfall Excess Depth, P_e = Direct Runoff Depth, r_d = 4.8 in.

Runoff Methods

- **1. Peak Discharge, Q_p, Methods:**
 - Rational Method
 - SCS Curve Number Method (and TR 55 Graphical Peak Discharge Method)

2. Unit Hydrograph Method

Runoff – Small Catchments Rational Method

- Ideal for small catchments (less than 100 acres)
- Used widely in Urban Storm water sewer design
- Requires the following design variables:

a) Runoff Coefficient C (refer to slide 29)

b) Maximum Rainfall intensity, i (in in/hr or mm/hr) (obtained from IDF Curves or IDF Equations for a specified duration usually equal to time of concentration, t_c)

c) Time of Concentration, t_c

Refer to Slides 17 and 18

d) Catchment Area, A (in acres or km² or Hectares (Ha))

Table: Runoff Coefficients, C For the Rational Method:

	Return Period (years)							
Character of surface	2	5	10	25	50	100	500	
Developed								
Asphaltic	0.73	0.77	0.81	0.86	0.90	0.95	1.00	
Concrete/roof	0.75	0.80	0.83	0.88	0.92	0.97	1.00	
Grass areas (lawns, pa	arks, etc.)							
Poor condition (gra	ss cover le	ess than 5	0% of the	area)				
Flat, 0-2%	0.32	0.34	0.37	0.40	0.44	0.47	0.58	
Average, 2-7%	0.37	0.40	0.43	0.46	0.49	0.53	0.61	
Steep, over 7%	0.40	0.43	0.45	0.49	0.52	0.55	0.62	
Fair condition (gras	s cover of	n 50% to	75% of th	e area)				
Flat, 0-2%	0.25	0.28	0.30	0.34	0.37	0.41	0.53	
Average, 2-7%	0.33	0.36	0.38	0.42	0.45	0.49	0.58	
Steep, over 7%	0.37	0.40	0.42	0.46	0.49	0.53	0.60	
Good condition (gra	ss cover l	arger than	75% of	the area)				
Flat, 0-2%	0.21	0.23	0.25	0.29	0.32	0.36	0.49	
Average, 2-7%	0.29	0.32	0.35	0.39	0.42	0.46	0.56	
Steep, over 7%	0.34	0.37	0.40	0.44	0.47	0.51	0.58	
Undeveloped								
Cultivated Land								
Flat, 0-2%	0.31	0.34	0.36	0.40	0.43	0.47	0.57	
Average, 2-7%	0.35	0.38	0.41	0.44	0.48	0.51	0.60	
Steep, over 7%	0.39	0.42	0.44	0.48	0.51	0.54	0.61	
Pasture/Range								
Flat, 0-2%	0.25	0.28	0.30	0.34	0.37	0.41	0.53	
Average, 2-7%	0.33	0.36	0.38	0.42	0.45	0.49	0.58	
Steep, over 7%	0.37	0.40	0.42	0.46	0.49	0.53	0.60	
Forest/Woodlands								
Flat, 0-2%	0.22	0.25	0.28	0.31	0.35	0.39	0.48	
Average, 2-7%	0.31	0.34	0.36	0.40	0.43	0.47	0.56	
Steep, over 7%	0.35	0.39	0.41	0.45	0.48	0.52	0.58	

Time of Concentration, t_c

Definition:

t_c = ∑travel times from the hydraulically remotest point in a catchment

- = (Overland flow time)
 - + (Channel or Pipe flow) time

<u>Refer to Appendix A</u> for Methods for Computing Time of Concentration

Example: t_c at this outlet = max ($t_1 + t_2$) or t_3 or t_4

Example 6: Rational Method for Catchment Runoff Peak

Two watersheds A and B (located in Tallahassee, Florida) drain at a common outlet. Determine the peak outflow, Q_p, in cfs for a design return period T = 25 years. Also calculate the size of a circular concrete pipe (Manning's n = 0.025, slope = 0.005) which can handle the peak flow. IDF Equation for Tallahassee, Florida, i (in mm/hr) ={ 8300/(t+33) } with t in min

Example 6: Rational Method for Catchment Runoff Peak (cont.)

Problem 3: Application of Rational Method in Storm Sewer Design

Determine Peak Flow from Sub-area Area III and Pipe size EB Using Rational Method Problem 3: Application of Rational Method in Storm Sewer Design (cont.)

Answer the following questions for a rainfall event with a return period T = 5-yrs :

1) The maximum rainfall intensity i in in/hr is:

3) The slope S_0 of pipe EB is:

a) 0.005; b) 0.00034; c) 0.0002; d) 0.0064

4) The required diameter of sewer pipe EB (in inches) to handle peak flow Q_p is (assume n =0.015):

a) 15.2; b) 32.6; c) 25.8; d) 20.5

From Manning's (US Units) D = (2.16xQpn/√S₀)^{3/8}

Problem 3: Application of Rational Method in Urban Storm Sewer Design- Complete Solution (cont.)

1 Sewer pipe	2 Length L	3 Slope S _o	4 Total area drained	5 Σca	6 t _c	7 Rainfall intensity i	8 Design discharge Q	9 Computed sewer diameter	10 Pipe size used	11 Flow velocity Q/A	12 Flow time L/V
	(ft)	(ft/ft)	(acres)		(min)	(in/hr)	(cfs)	(ft)	(ft)	(ft/s)	(min)
EB	450	0.0064	4	2.4	10.0						
AB	550	0.0081	5	3.5	7.0	4.68	16.4	1.94	2.00	5.21	1.76
BC	400	0.0064	18	10.8	15.0	3.79	40.9	2.87	3.00	5.78	1.15
CD	450	0.0064	27	15.3	16.2	3.68	56.3	3.22	3.50	5.85	1.28

Solution in the previous slide

Note for multiple areas:

Peak Flow,
$$\mathbf{Q} = \mathbf{C}_c \mathbf{i} \mathbf{A}_T = (\sum \mathbf{C}_i \mathbf{i} / \sum \mathbf{A}_i) \mathbf{A}_T = \mathbf{i} \sum \mathbf{C}_i \mathbf{A}_i$$

where total area, $A_T = \sum A_i$

Runoff - Midsize Catchments:

SCS TR55 Method
Runoff - Midsize Catchments: SCS TR55 Method

Requires:

 Cumulative 24-hour Design Rainfall depth, P (in inches) for a selected return period, T (frequency)

Runoff - Midsize Catchments: SCS TR55 Method (cont.)

Requires: SCS Curve Number, CN, based on Land use, Soil, and Antecedent Moisture Condition (AMC)

Runoff curve numbers for selected agricultural, suburban, and urban land uses (antecedent moisture condition II, $I_a = 0.2S$)

Land Use Descriptio	•	Ну	Hydrologic Soil Grou					
		A	в	С	D			
Cultivated land1; with	out conservation treatment	72	81	88	91			
with	conservation treatment	62	71	78	81			
Pasture or range land:	poor condition	68	79	86	89			
	good condition	39	61	74	80			
Meadow: good condit	ion	30	58	71	78			
Wood or forest land:	thin stand, poor cover, no mulch	45	66	77	83			
	good cover2	25	55	70	77			
Open Spaces, lawns,	parks, golf courses, cemeteries, etc.							
good condition:	grass cover on 75% or more of the area	39	61	74	80			
fair condition: gr	ass cover on 50% to 75% of the area	49	69	79	84			
Commercial and business areas (85% impervious)		89	92	94	95			
Industrial districts (72	% impervious)	81	88	91	93			
Residential ³ :			-					
Average lot size	Average % impervious4				1			
1/8 acre or less	65	77	85	90	92			
1/4 acre	38	61	75	83	87			
L/3- acre	30	57	72	81	86			
1/2 acre	25	54	70	80	85			
l acre	20	51	68	79	84			
Paved parking lots, roofs, driveways, etc.5		98	98	98	98			
Streets and roads:								
paved with curbs and storm sewers5		98	98	98	98			
gravel		76	85	89	91			
dirt			82	87	89			

1 For a more detailed description of agricultural land use curve numbers, refer to Soil Conservation Service, 1972, Chap. 9

2Good cover is protected from grazing and litter and brush cover soil.

³Curve numbers are computed assuming the runoff from the house and driveway is directed towards the street with a minimum of roof water directed to lawns where additional infiltration could occur.

⁴The remaining pervious areas (lawn) are considered to be in good pastare condition for these curve numbers. ⁵In some warmer climates of the country a curve number of 95 may be used.

Runoff - Midsize Catchments: SCS TR55 Method (cont.) Cumulative Direct Runoff Volume (inches), Q

Based on Cumulative Design Rainfall P, total Direct Runoff Volume is computed using an equation or figure shown below:

 $\mathbf{Q} = (\mathbf{P} - \mathbf{I}_a)^2 / (\mathbf{P} - \mathbf{I}_a + \mathbf{S});$ Sorptivity (inches): S = (1000/CN) - 10 Initial Abstraction (inches): I_a = 0.2 S

Solution of the SCS runoff equations. (Source: Soil Conservation Service, 1972, Fig. 10.1, p. 10.21)

39

Example 7: SCS CN and Direct Runoff Calculations (Chow et al., 1988)

• Given:

Note: 1.0 sq. mile = 259 ha = 640 acres or 1.0 ha = 2.471 acres

Rain falls on a 0.05 square miles (32 acres or 12.95 ha) urban catchment with an intensity of 0.85 in/hr (2.16 cm/hr) for a duration of 3 hours. The soil is classified as SCS hydrologic soil group (HSG) C in the entire catchment.

- 1) 20% area is business district (85% impervious; HSG =C)
- 2) 80% area is residential district (1/3 acre lots with 30% impervious)
- Determine total runoff volume in inches and ft³.

Composite CN for Catchment
 CN = (0.20x94 + 0.80x81) = 83.6

Note: In computing Composite CN in urban areas any area not urbanized is assumed to be open space in good hydrologic condition (see SCS Curve Number, CN Table foot-note 4 – Slide 38).

Example 7: SCS CN and Direct Runoff Calculations (cont.) (Chow et al., 1988)

2. Compute total rainfall:

Note: The design rainfall is not SCS 24 hr Type-II

P = 0.85 in/hr x 3 hours = 2.55 inches

3. Compute Runoff Volume Q (in inches):

Sorptivity, S = (1000/CN) - 10 = (1000/83.6) - 10 = 1.96 inches Initial Abstraction, $I_a = 0.2S = 0.2x1.96 = 0.392$ inches Direct runoff depth, Q = (P - I_a)²/ (P- I_a + S) = (2.55-0.392)²/ (2.55-0.392+1.96) = 1.13 inches Direct runoff volume V_d = (1.13/12) x (0.05 x 640 x 43,560) = 131,260.8 ft³ = (0.02832x131,260.8) = 3,717.3 m³ Note: 1.0 ft³ = 0.02832 m³ **Problem 4: Calculating SCS CN and Direct Runoff, Q**

An undeveloped 1000 acre catchment currently is covered by pasture in good condition and is composed of hydrologic soil group C. This gives a pre-development composite SCS CN equal to 74

A proposed urban development (post development) will change the land use to:

1) 55% 1/3 acre lots (30% impervious), CN = 81;

2) 20 % in open space in good condition, CN = 74;

3) 25% in roads, sewers and parking lots, CN = 98.

Note: Refer to SCS CN Table, Slide 38 for curve numbers.

Problem 4: Calculating SCS CN and Direct Runoff, Q (Cont.)

Assuming AMC II condition answer the following questions:

1) The post-development composite SCS CN is:

a) 90.2 b)78.6 c) 83.9 d) 89.5

2) The pre-development direct runoff Q associated with a 10year, 24-hour rainfall of P = 3.2 inches is (Note: CN =74) : (Use Figure – Slide 39 or Equation: Q = $P_e = (P - I_a)^2/(P - I_a + S)$) :

a) 2.5 b) 1.5 c) 1.0 d) 2.1

3) The **post-development** direct runoff Q associated with a 10year, 24-hour rainfall of 3.2 inches is:

(Use Figure – Slide 39 or Equation: $Q = P_e = (P - I_a)^2/(P - I_a + S))$:

a) 3.2 b) 2.8 c) 1.3 d) 1.7

Note: For Q. 2 & 3: S=(1000/CN) - 10; $I_a = 0.2S$

Runoff - Midsize Catchments: SCS TR55 Method

Peak Discharge, Qp computation:

• Peak Flow (cfs): $Q_p = q_u A Q F$

where:

- q_{...} = unit peak discharge (cfs/sq. mi/in)
- A^d = watershed size in sq. miles Q = Volume of direct runoff in inches
- **F** = Pond Factor (depends on % natural storage in ponds and lakes. Assume 1.0 if storage negligible)

•Requires:

- Unit peak discharge, q_u, based on Graphical Method
- Time of Concentration, $t_c = (\sum Overland +$ **Channel Flow**)

Runoff - Midsize Catchments: SCS TR55 Method Computing Catchment's Time of Concentration

SCS TR55 uses the following flow paths for computing catchment's time of concentration:

- 1. Overland Sheet Flow (<300 feet)
- 2. Overland Shallow Concentrated Flow
- 3. Channel or Pipe Flow

SCS TR55 Method (cont.)

1) Equations for Computing Overland Sheet Flow Time:

US Units:	$t = \frac{0.007(nL)^{0.8}}{P_2^{0.5}S^{0.4}}$
SI Units:	$t = \frac{0.02887(nL)^{0.8}}{P_2^{0.5}S^{0.4}}$

where:

- t = travel time in hours;
- S = average land slope in feet/foot (or meters/meter in SI)
- n = Manning's overland roughness coefficient (see Slide 48)
- L = overland flow distance in feet (or meters for SI units)
- P₂ = 2-Year, 24-hour rainfall depth in inches (or cms for SI units)

Table: TR55 Manning n Values for Overland Sheet Flow

Surface Description	Manning n		
Smooth surfaces			
(concrete, asphalt, gravel, or bare soil)	0.011		
Fallow (no residue)	0.05		
Cultivated ground			
(residue cover less than or equal to 20%)	0.06		
(residue cover greater than 20%)	0.17		
Grass			
Range, short prairie	0.15		
Dense	0.24		
Bermuda	0.43		
Range	0.13		
Woods			
Light underbrush	0.40		
Dense underbrush	0.80		

Note: Dense grass includes weeping lovegrass, bluegrass, buffalo grass, blue gamma grass, native grass mixture, alfalfa, and the like.

SCS TR55 Method (cont.)

2) Computing Shallow Concentrated Overland Flow Time

Figure: SCS TR55 Average Velocity for Shallow Concentrated Overland Flow

Average velocity (ft/s)

49

SCS TR55 Method (cont.)

3) Computing Average Velocity for Channel or Pipe Flow Time

Procedure:

Step 1: Use Manning's Formula to compute velocity in pipe or channel:

 $V = (1.49/n) R^{2/3} S_0^{1/2}$ (US Units)

 $V = (1.0/n) R^{2/3} S_0^{1/2}$ (SI Units)

(Note: For full pipe flow condition $R = d_0/4$ where d_0 pipe diameter)

Step 2: Compute travel time = Pipe or channel length / velocity = L/V

Example 8: TR-55 Time of Concentration Computation

A 300 acre watershed drains along the path ED \rightarrow DC \rightarrow CB \rightarrow BA shown in the table below. Determine the time of concentration, t_c using SCS TR55 method

Hydraulic Path	Type of Flow	<u>Slope (%)</u>	<u>Length (ft)</u>
ED	Overland Sheet Flow	5.0	100
DC	Overland Gutter Flow (unpaved)	1.5	300
СВ	Pipe Flow (d ₀ = 24 in; n = 0.015)	1.0	3000
BA	Open Channel Flow ($y = 2$ ft; $n = 0.02$)	0.5	5000
	(For a wide rectangular: Hydraulic Radius	R = flow dept	h, y)

Note:	The pipe is 24 inches in diameter with a Manning's n = 0.015
	The open channel is wide rectangular with main bank flow depth = 2.0 ft.
	and Manning's n = 0.020.

Example 8: TR-55 Time of Concentration Computation (cont.)

1. Path ED (Overland Sheet flow):

Bermuda Grass – roughness coefficient from slide 48, n = 0.43 2-yr, 24 hour cumulative rainfall depth, P₂ = 3.2 inches Overland surface slope, S = 0.05 Overland flow length, L = 100 feet Travel time, $t_{ED} = \underbrace{0.007(nL)^{0.8}}_{P_2^{0.5}S^{0.4}} = \underbrace{0.007(0.43x100)^{0.8}}_{(3.2)^{0.5}(0.05)^{0.4}}$ = 0.263 hrs = 15.8 min = 946.3 s

2. Path DC (Overland Concentrated Flow – Unpaved Surface):

Overland flow slope, S = 0.015
Overland flow velocity, V = 1.8 ft/s

From Figure – Slide 49

Travel time, $t_{DC} = L/V = 300/1.8 = 166.67 \text{ s} = 2.78 \text{ min} = 0.046 \text{ hrs}$.

Example 8: TR-55 Time of Concentration Computation (cont.)

3. Path CB (Pipe Flow):

Mannings, n = 0.015; Pipe slope, S = 0.01; Pipe length, L = 3000 ft Pipe diameter = 24 inches = 2.0 feet Pipe cross sectional area, A = $3.14x2^2/4 = 3.14$ ft² Pipe wetted perimeter, P = 3.14x2 = 6.28 ft Pipe Hydraulic Radius, R = A/P = 3.14/6.28 = 0.50Velocity, V = $(1.49/0.015)x0.5^{2/3}x0.01^{1/2} = 6.26$ ft/s From Manning's Formula (US units) – Slide 40

Travel time in pipe, $t_{CB} = L/V = 3000/6.26 = 479.2 s$ = 7.987 min = 0.113 hrs

Example 8: TR-55 Time of Concentration Computation (cont.)

4. Path BA (Open Channel Flow):

From Manning's Formula (US units) - Slide 40

Mannings, n = 0.02; Channel slope, S = 0.005;

Channel length, L = 5000 ft

Flow depth, y = 2.0 feet

Hydraulic Radius, R = y = 2 feet (wide rect. channel)

Velocity, V = (1.49/0.02)x2.0^{2/3}x0.005^{1/2} = 8.36 ft/s ←

Travel time in pipe, $t_{CB} = L/V = 5000/8.36$

= 598.1 s = 9.968 min = 0.166 hrs

Watershed Time of Concentration, t_c = total travel time = $\sum t = t_{ED} + t_{DC} + t_{CB} + t_{BA}$ = 0.263 + 0.046 + 0.113 + 0.166 = 0.588 hours = 35.28 min

Problem 5: SCS TR-55 - Time of Concentration Computation

Using SCS TR55 Method, calculate the time of concentration of a watershed given the following flow path:

- 1) overland sheet flow on dense grass, length L = 100 ft; slope S = 0.01, 2-yr 24-hr rainfall P_2 = 3.6 inches;
- 2) shallow concentrated flow on unpaved surface, length L = 1400 ft, slope S = 0.01;
- 3) streamflow, Manning's n = 0.05; flow area A = 27 ft², wetted perimeter P =28.2 ft, slope S = 0.005 and length L =7300 ft.

Problem 5: TR-55 Time of Concentration Computation (cont.)

1) Overland Flow Time, t₁ (refer to slides 47 and 48):

n = 0.24 (dense grass); L= 100 ft; S= 0.01and P2 = 3.6 in

 $t_1 = [0.007(nL)^{0.8}]/(P_2^{0.5}S^{0.4}) = _$ min =

2) Shallow Concentrated Flow, t₂ (use Figure – Slide 49) :

Unpaved; L = 1400 ft; S = 0.01

Average Velocity = _____ ft/s

Travel time, $t_2 = L/V = ___sec = ___min$

3) Stream/ Channel Flow (use Manning's equation – Slide 50):

manning's n = 0.05; A = 27 ft²; P = 28.2 ft; S = 0.005; L =7300 ft V = $(1.49/n)R^{2/3}S^{1/2} =$ _____ ft/s

Travel time $t_3 = L/V =$ _____ sec = _____ min

Total Travel Time (or time of concentration)

 $= t_1 + t_2 + t_3 = t_c = ___min ____hrs.$

SCS TR55 Method – Peak Discharge Computation

Steps:

- 1. Compute watershed composite curve number CN;
- 2. Compute sorptivity, S (inches), initial abstraction, I_a (inches) and I_a/P ratio;
- 3. Compute direct runoff volume Q (inches);
- 4. Compute unit peak discharge, q_u (cfs/sq. mi/inch) given time of concentration, t_c and I_a/P ratio from Figure in Slide 58 (or similar curve for Type I and III)
- 5. Determine the pond factor, F.
- 6. Compute peak discharge $q_p = q_u Q A F$

SCS TR55 Method – Peak Discharge Computation Figure: Unit Peak Discharge Curves-Type II

Refer to USDA TR55 Manual for Type I-A, Type I-B and Type III Curves

Example 9: TR-55 Computation of Peak Flow Using SCSTR55 Graphical Peak Discharge Method

Given:

- 250 acre (0.39 sq. miles) watershed;
- 25-year, 24hour Type II design rainfall P = 6 inches;
- watershed time of concentration, t_c = 1.50 hours;
- composite SCS Curve number CN = 75
- Neglect storage in lakes and ponds.

Compute the peak discharge q_p.

Example 9: TR-55 Computation of Peak Flow Using SCSTR55 Graphical Peak Discharge Method (Cont..)

Solution:

- S = (1000/CN) 10 = (1000/75) 10 = 3.33 inches;
- I_a = 0.2 S = 0.2x3.33 = 0.667 inches;
- Ratio I_a /P = (0.667/6.0) = 0.11;
- Runoff volume Q = $(P-I_a)^2/(P-I_a+S)$ = $(6.0-0.667)^2/(6.0-0.667+3.33) = 3.28$ inches;
- Unit peak discharge, q_u = 285 cfs/sq.mi/inch (Slide 58);
- Pond factor F = 1;

for $t_c = 1.5$ hours

Peak Discharge, $q_p = q_u Q A F$ = 285x3.28x0.39x1 = 364.6 cfs.

Runoff Midsize Catchments Unit Hydrograph Method

Unit Hydrograph Definition:

The unit hydrograph of a watershed is defined a direct runoff hydrograph (DRH) resulting from 1 inch (or 1 cm in SI units) of excess rainfall generated uniformly over the drainage area at a constant rate for an effective duration t_r (referred to as the Unit Hydrograph duration)

61

Unit Hydrograph Properties (Adapted from Ponce 1989)

Direct Runoff Convolution (Adapted from Chow el al (1988)

The set of equations for discrete time convolution $Q_n = \sum_{m=1}^{n-m} P_m U_{n-m+1}$; $\frac{n = 1, 2, \dots, N}{Q_1 = P_1 U_1}$ $\frac{Q_2 = P_2 U_1 + P_1 U_2}{Q_3 = P_3 U_1 + P_2 U_2} + P_1 U_3$ \dots $Q_M = P_M U_1 + P_{M-1} U_2 + \dots + P_2 U_M + P_1 U_{M+1}$ \dots $Q_{N-1} = 0 + 0 + \dots + 0 + 0 + \dots + P_M U_{N-M} + P_M U_{N-M+1}$ $Q_N = 0 + 0 + \dots + 0 + 0 + \dots + 0 + P_M U_{N-M+1}$

In the equations above:

- **P**_m = rainfall excess pulses (inches or cms)
- **U**_j = unit hydrograph ordinates cfs/in or m^{3/}s/cms)
- **Q**_n = Direct runoff ordinates (cfs)
- N = number of non-zero direct runoff ordinates, Q_n
- **M** = number of rainfall excess pulses in the hyetograph, P_m
- J = number of Unit Hydrograph ordinates, U_j

N = M + J - 1

Example 10: Derivation of Direct Runoff and Streamflow Hydrographs Using a Given Unit Hydrograph (Chow el al 1988)

Given:

- 1/2 hour unit hydrograph
- Storm of 6 inches total rainfall excess depth with:

2 inches first half hour (P₁),

3 inches in the second half hour (P_2)

1 inch in the third half hour (P₃)

- Base Flow = 500 cfs
- Determine:

Direct Runoff and the Streamflow Hydrograph.

Example 10: Derivation of Direct Runoff and Stream Flow Hydrographs Using a Given Unit Hydrograph (cont.)

Solution by Convolution where N= M+J-1 = 3+9-1 = 11 ordinates

65

Problem 6: Derivation of Direct Runoff and Streamflow Hydrographs Using a Given Unit Hydrograph

Given: Rainfall hyetograph, one-hour unit hydrograph and abstractions a constant rate of $\Phi = 0.5$ in/hr.

Time (hrs):	1	2	3	4
Rainfall intensity, i (in/hr):	1.0	1.5	0.5	
1-hr Unit Hydrograph (cfs/in):	50	200	150	50

Answer the following questions by completing the spaces shown in green:

Thank you for listening to the presentation.

Remember to Review the following Appendix for:

- 1. Hydrologic Routing
- 2. Groundwater Hydrology Well Hydraulics
- 3. Additional examples on Unit Hydrograph

Good luck on the P.E. Exam QED

REFERENCES

- 1. Chow, Maidment, Mays, 1988. Applied Hydrology
- 2. Chow, ed. 1964. Handbook of Applied Hydrology
- 3. Domenico, Schwartz, 1998. Physical and Chemical Hydrogeology.
- 4. Freeze, Cherry, 1979. Groundwater
- 5. Maidment, ed. 1993. Handbook of Hydrology
- 6. Ponce, 1989. Engineering Hydrology

Answers

•	Problem 1 (Slide 9):	1) a;	2) a .							
•	Problem 1 (Slide 10):	3) b;	4) c;	5) I	o;	6) c				
•	Problem 2 (Slide 21):	1) b;	2) d;	3) (C.					
•	Problem 3 (Slide 34):	1) c;	2) b;	3) (d;	4) (d.			
•	Problem 4 (Slide 44);	1) c;	2) c;	3) (d.					
•	Problem 5 (Slide 55):	1) Ovei	rland she	et flo	ow: 0.	296 I	hrs;			
		2) Over	rland Sha	llow	Cond	centra	ated	flow	: 0.229	hrs
		3) Stre	am Flow	: 0.9	91 hrs	S				
		(1) Tota		6 C.a.		ratio	~ - 4	E4E	houro	
		4) 1018	ai Time o		icent	ratio	n = 1	1.515	nours	I
•	Problem 6 (Slide 66):	a) Time (h	rs):		1	2	3	6		
•		Rainfall e	xcess (inc	hes):	0.5	1.0	0	(M=2)		
•		b) Time (ł	nrs):	1	2	3	4	5		
•		Direct run	off (cfs):	25	150	275	175	50	(N=5)	
									()	
•		c) Volume	of direct r	runof	f, V _d =	675 c	fs-ho	ours =	2430,0	00 ft ³
•		d) Drainag	je Area = 0).697	sq. mi	les				
	/III:	4	. l 4 ! l	\						

 (Hint: use volume under unit hydrograph = 1 inch or Volume under direct runoff hydrograph

APPENDIX A

Hydrologic Design Components for SCS TR55

Table: Design Frequency or Return Period forVarious Hydraulic Structures

Type of structure	Return period (years)				
Highway culverts					
Low traffic	5-10				
Intermediate traffic	10-25				
High traffic	50-100				
Highway bridges					
Secondary system	10-50				
Primary system	50-100				
Farm drainage					
Culverts	5-50				
Ditches	5-50				
Urban drainage					
Storm sewers in small cities	2-25				
Storm sewers in large cities	25-50				
Airfields					
Low traffic	5-10				
Intermediate traffic	10-25				
High traffic	50-100				
Levees					
On farms	2-50				
Around cities	50-200				
Dams with no likelihood of					
loss of life (low hazard)					
Small dams	50-100				
Intermediate dams	100 +				
Large dams					
Dams with probable loss of life					
(significant hazard)					
Small dams	100 +				
Intermediate dams	_				
Large dams	_				
Dams with high likelihood of considerable					
loss of life (high hazard)					
Small dams	_				
Intermediate dams	_				
Large dams					

Generalized design criteria for water-control structures

adapted from Chow, Handbook of Applied Hydrology, McGraw - Hill 1964
Methods for Computing Time of Concentration

• Formulas

- Example: Kirpich, SCS Average Velocity Charts

Approximate Velocities

Table: Formulas for Time of Concentration, t_c (source: Chow et al, 1988)

Method and Date	Formula for t_c (min)	Remarks
Kirpich (1940)	$t_c = 0.0078L^{0.77}S^{-0.385}$ L = length of channel/ditch from headwater to outlet, ft S = average watershed slope, ft/ft	Developed from SCS data for seven rural basins in Tennessee with well-defined channel and steep slopes (3% to 10%); for overland flow on concrete or asphalt surfaces multiply t_c by 0.4; for concrete channels multiply by 0.2; no adjustments for overland flow on bare soil or flow in roadside ditches.
California Culverts Practice (1942)	$t_c = 60(11.9L^3/H)^{0.385}$ L = length of longest Source: Kibler, 1982, Copyright by between divide and outlet, ft	Essentially the Kirpich formula; developed from small moun- tainous basins in California (U.S. Bureau of Reclamation, the American Geophysical Union.
Izzard (1946)	$t_c = \frac{41.025(0.0007i + c)L^{0.33}}{S^{0.333}i^{0.667}}$ i = rainfall intensity, in/h c = retardance coefficient L = length of flow path, ft S = slope of flow path, ft/ft	Developed in laboratory experiments by Bureau of Public Roads for overland flow on roadway and turf surfaces; values of the retardance coefficient range from 0.0070 for very smooth pavement to 0.012 for concrete pavement to 0.06 for dense turf; solution requires iteration; product <i>i</i> times <i>L</i> should be ≤ 500 .
Federal Aviation Administration (1970)	$t_c = 1.8(1.1 - C)L^{0.50}/S^{0.333}$ C = rational method runoff coefficient L = length of overland flow, ft S = surface slope, %	Developed from air field drainage data assembled by the Corps of Engineers; method is intended for use on airfield drainage problems, but has been used frequently for overland flow in urban basins.

Summary of time of concentration formulas

Source: Kibler, 1982, Copyright by the American Geophysical Union.

Table: Formulas for Time of Concentration, t_c (Cont.) (source: Chow et al, 1988)

Method and Date	Formula for t_c (min)	Remarks
Kinematic wave formulas Morgali and Linsley (1965) Aron and Erborge (1973)	$t_c = \frac{0.94L^{0.6}n^{0.6}}{(i^{0.4}S^{0.3})}$ L = length of overland flow, ft n = Manning roughness coefficient i = rainfall intensity in/h S = average overland slope ft/ft	Overland flow equation developed from kinematic wave analysis of surface runoff from developed surfaces; method requires iteration since both i (rainfall intensity) and t_c are unknown; superposition of intensity-duration-frequency curve gives direct graphical solution for t_c
SCS lag equation (1973)	$t_c = \frac{100 \ L^{0.8} [(1000/\text{CN}) - 9]^{0.7}}{1900 \ S^{0.5}}$ L = hydraulic length of watershed (longest flow path), ft CN = SCS runoff curve number S = average watershed slope, %	Equation developed by SCS from agricultural watershed data; it has been adapted to small urban basins under 2000 acres; found generally good where area is completely paved; for mixed areas it tends to overestimate; adjustment factors are applied to correct for channel improvement and impervious area; the equation assumes that $t_c = 1.67 \times \text{basin lag}$.
SCS average velocity charts (1975, 1986)	$t_c = \frac{1}{60} \Sigma \frac{L}{V}$ L = length of flow path, ft V = average velocity in feet per second from Fig. 3-1 of TR 55 for various surfaces	Overland flow charts in Fig. 3-1 of TR 55 show average veloc- ity as function of watercourse slope and surface cover. (See also Table 5.7.1)

Summary of time of concentration formulas

Used in SCS TR55 Method

Table: Average Velocities for Different Flow Paths (source: Chow et al. 1988)

Approximate average velocities in ft/s of runoff flow for calculating time of concentration

Description of water course		Slope i	n percent	
	0-3	4-7	8-11	12-
Unconcentrated*				
Woodlands	0-1.5	1.5- 2.5	2.5- 3.25	3.25-
Pastures	0-2.5	2.5- 3.5	3.5- 4.25	4.25-
Cultivated	0-3.0	3.0- 4.5	4.5- 5.5	5.5-
Pavements	0-8.5	8.5-13.5	13.5-17	17-
Concentrated**				
Outlet channel-determine vel	ocity by Manni	ng's formula		
Natural channel not well defined	0–2	2-4	4-7	7–

*This condition usually occurs in the upper extremities of a watershed prior to the overland flows accumulating in a channel.

**These values vary with the channel size and other conditions. Where possible, more accurate determination: should be made for particular conditions by the Manning channel formula for velocity.

(Source: Drainage Manual, Texas Highway Department, Table VII, p. II-28, 1970.)

APPENDIX B

Hydrologic Routing

Reservoir or Detention Basin Routing

- **Storage Indication Method:** Used for routing flood hydrographs through detention basins or reservoirs.
- Information Required:
 - 1. Storage-Elevation Data for the reservoir (obtained from site topographic map)
 - 2. Storage-Discharge Relationship (depends on the hydraulics of outflow control structures such as a spillway) (See Figure Slide 67)
 - 3. Steps 1 and 2 are combined to develop a Storage-Indication curve:

2S/Δt + Q vs Q curve (See Figure – Slide 68)

• Uses discrete form of equation of continuity as:

$$\left(\frac{2S_{j+1}}{\Delta t}-Q_{j+1}\right)=\left(\frac{2S_{j+1}}{\Delta t}+Q_{j+1}\right)-2Q_{j+1}$$

Reservoir Routing (cont.) Figure: Discharge-Elevation Relationships for Various Types of Spillway Structures

(Adapted from: Chow et al, 1988)

Spillway type	Equation	Notation
Uncontrolled over- flow ogee crest	$Q = CLH^{3/2}$	Q = discharge, cfs C = variable coefficient of discharge
		L = effective length of crest
Community of the second		H = total head on the crest including velocity of approach head.
Gate controlled ogee crest	$Q = \frac{2}{3}\sqrt{2g}CL(H_1^{3/2} - H_2^{3/2})$	$H_1 =$ total head to bottom of the opening
× (>		$H_2 =$ total head to top of the opening
Community		C = coefficient which dif- fers with gate and crest arrangement
Morning glory spill- way	$Q = C_o(2\pi R_s)H^{3/2}$	$C_o = \text{coefficient related to } H$ and R_s
$H R_S \rightarrow I$		$R_s = $ radius of the over- flow crest
		H = total head
Culvert (submerged	$Q = C_d WD \sqrt{2gH}$	W = entrance width
inlet control)		D = height of opening
		C_{d} = discharge coefficient

Source: Design of Small Dams, Bureau of Reclamation, U. S. Department of the Interior, 1973.

79

Reservoir Routing (cont.) Figure: Development of Storage Indication Curve (Chow et al, 1988)

Reservoir Routing (cont.) Example 8: Developing a Storage Indication Curve.

Problem Statement:

Storage vs outflow characteristics for a proposed reservoir are given below. Calculate the storage-outflow function $2S/\Delta t + Q$ vs Q for each of the tabulated values if $\Delta t = 2$ hours. Plot a graph of the storage-outflow function.

Storage, S (10 ⁶ m ³):	75	81	87.5	100	110.2
Outflow, Q (m ³ /s):	57	227	519	1330	2270

Solution:

Storage	Outflow			<u>2S/Δt + O</u>
(10^6 m^3)	(m ³ /s)			(m ³ /s)
75	57			20890
81	227			22727
87.5	519			24825
100	1330			29108
110.2	2270			32881
	∆t =	2	hr	
	∆t =	7200	S	

Reservoir Routing

Example 8: Developing a Storage Indication Curve (cont.) (Adapted from: Chow et al, 1988)

Storage-Outflow, S vs Q

82

Example 9: Reservoir Routing (Cont.) (Chow et al, 1988)

Using the following storage indication data route the given inflow hydrograph using the storage indication method

Column: 1	2	3	Column:	1 Elevation <i>H</i>	2 Discharge Q	3 Storage S	$\frac{4}{(2S/\Delta t)^*}$	+ 0
Time	Time	Inflow		(ft)	(cfs)	(ft ³)	(cfs)	
index j	(min)	(cfs)		0.0	0	0	0	
-	~	- a		0.5	3	21,780	76	
-		t		1.0	8	43,560	153	
	10	- 60		1.5	17	65,340	235	
*	20	120		2.0	30	87,120	320	
4	30	180		2.5	43	108,900	406	
5	40	240		3.0	60	130,680	496	
6	50	300		3.5	78	152,460	586	
7	60	360		4.0	97	174,240	678	
8	70	320		4.5	117	196,020	770	
9	80	280		5.0	137	217,800	863	
10	90	240		5.5	156	239,580	955	
11	100	200		6.0	173	261,360	1044	
12	110	160		6.5	190	283,140	1134	
13	120	120		7.0	205	304,920	1221	
14	130	80		1.5	218	326,700	1307	
15	140	40		8.0	231	348,480	1393	
16	150	õ		8.5	242	370,260	14/6	
17	160			9.0	253	392,040	1560	
19	170			9.5	204	413,820	1043	
10	120		- a <u>Calabara</u>	10.0	275	435,600	1/27	
12	100		*Time inter	val $\Delta t = 10 m$	nin			
20	200		i nne muci	10 1				
	200							

Example 9 Reservoir Routing (Chow et al, 1988) (cont.):

Reservoir Routing Example : Reservoir Routing Using Storage-Indication Method.

(Adapted from: Chow et al, 1988)

Problem Statement:

Use the level pool routing method to route the hydrograph given below through the reservoir whose storage-outflow characteristics are given in Prob. 8.2.1. What is the maximum reservoir discharge and storage? Assume that the reservoir initially contains 75×10^6 m³ of storage.

Time (h)	0	2	4	6	8	10	12	14	16	18
Inflow (m ³ /sec)	60	100	232	300	520	1,310	1.930	1.460	930	650

Storage	Outflow	2S/At + 0	
(10^6 m^3)	(m ³ /s)	(m3/s)	
75	57	20890	
81	227	22727	
87.5	519	24825	
100 1330		29108	
110.2	2270	32881	

APPENDIX C

Groundwater: Well Hydraulics

GROUND WATER HYDROLOGY

Terminology

- Aquifer water bearing strata capable of transmitting water (fluid) at a rate as to be suitable for water supply
- Confined Aquifer an aquifer located between two layers of low permeability or impermeable strata (aquitard)
- Unconfined Aquifer water table aquifer, phreatic aquifer, water level exposed to atmospheric pressure
- Vadose zone unsaturated region above the water table
- Potentiometric or Piezometric surface hydraulic head, h, level at a point or across a region of aquifer

Fundamental Principles

Fundamental Principles (cont.)

Darcy's Law: v = q = K i v = q = flux rate or velocity (ft/s or m/s) i = hydraulic gradient, dh/dL = (h₂ -h₁)/(L₂-L₁) K = hydraulic conductivity (ft/s or m/s)

Volume flow rate: Q = q A A = flow area

Well Hydraulics Thiem's Steady State Solution

Unconfined Aquifer:

$$Q = \frac{\pi K_f (h_2^2 - h_1^2)}{\ln(r_2/r_1)}$$

Confined Aquifer:

$$Q = 2\pi K_f m \frac{h_2 - h_1}{\ln(r_2/r_1)}$$

where,

Q = Discharge from pumping well in cfs (m³/s or gpm);

h = hydraulic or piezometric head = p/γ in ft (or m);

K_f = hydraulic conductivity in gpd/ft² (or ft/s);

r = distance to observation well from center of the puping well in ft (or m)

m = thickness of the confined aquifer in ft (or m)

Example: Thiem's Steady State Solution - Unconfined Aquifer

Example: Thiem's Steady State Solution - Unconfined Aquifer

Given:

•A 20 inch diameter well fully penetrates a 100 ft deep unconfined aquifer;

•Drawdowns at two observation wells located at 90 ft and 240 ft from the pumping well are 23 ft and 21.5 ft respectively;

•Hydraulic Conductivity of the aquifer is $K_f = 1400 \text{ gpd/ft}^2 \text{ x}$ ((1.55x10⁻⁶ cfs/gpd) = 2.17x10⁻³ ft/s

•Determine: The discharge Q from the pumping well in gpm

Solution:

Hydraulic heads: $h_1 = 100 - 23 = 77$ ft (at $r_1 = 90$ ft); $h_2 = 100 - 21.5 = 78.5$ ft. (at $r_2 = 240$ ft); $K_f = 1400 \text{ gpd/ft}^2 \text{ x}$ ((1.55x10⁻⁶ cfs/gpd) = 2.17x10⁻³ ft/s

Q = 3.14 K
$$_{f}$$
 (h $_{2}^{2}$ – h $_{1}^{2}$) / log $_{e}$ (r $_{2}$ /r $_{1}$) - all in consistent units
= 3.14 x 2.17x10⁻³ (78.5² – 77²) / log $_{e}$ (240/90)
= 1.62 cfs = 725.9 gpm

Example : Thiem's Steady State Solution – Confined Aquifer $Q = 2\pi K_f m \frac{h_2 - h_1}{\ln(r_2/r_1)}$ Ground Observation wells Piezometric Pumped surface well 52 Original piezometric surface 260 \mathbf{x}_{i} , h_0 h_1 h_{2} Impervious m = aquiferstrata thickness 1.1 7 (214)

FIGURE 3.9 Radial flow to a well in a confined aquifer.

Example : Thiem's Steady State Solution – Confined Aquifer

Problem: Determine the hydraulic conductivity, K_f, of an artesian aquifer (confined aquifer) pumped by a fully penetrating well. **Given:**

- 1) Aquifer thickness, m = 100 feet
- 2) Steady state pumping rate Q =1000 gpm = 2.232 cfs
- 3) Drawdowns, s, at observation wells:

Well 1: $r_1 = 50$ ft; $s_1 = 10$ ($h_1 = 100-10 = 90$ ft)

Well 2: $r_2 = 500 \text{ ft}$; $s_2 = 1 \text{ ft} (h_2 = 100-1=99 \text{ ft})$

Solution:

Solve for Hydraulic Conductivity, K_f from Thiem's steady state equation for confined aquifer:

$$Q = 2\pi K_f m \frac{h_2 - h_1}{\ln(r_2/r_1)}$$

$$\begin{split} &\mathsf{K}_{\mathsf{f}} = \{ \mathsf{Q} \left(\log_{\mathsf{e}}(\mathsf{r}_{2}/\mathsf{r}_{1}) \right\} / \{ (2 \ || \ m \ (\mathsf{h}_{2} - \mathsf{h}_{1}) \} - \text{ all in consistent units} \\ &= \{ 2.232 \times \log_{\mathsf{e}}(500/50) \} / \{ 2 \times 3.14 \times 100 \times (99 - 90) \} \\ &= 9.093 \times 10^{-4} \text{ ft/s or ft}^{3} / \text{s.ft}^{2} \\ &= (9.093 \times 10^{-4} \text{ft/s or ft}^{3} / \text{s.ft}^{2}) \times 646,323 \text{ gpd/ft}^{2} \\ &= 587.7 \text{ gpd/ft}^{2} \end{split}$$

Theis Unsteady State Solution

ASSUMPTIONS

- 1. The aquifer is homogeneous, isotropic, and of infinite extent (this is a built-in assumption of the groundwater flow equation).
- 2. The transmissivity of the aquifer is practically constant.
- The water derived is entirely from storage and is released instantaneously with decline of head.
- 4. The well penetrates the entire thickness of the aquifer, and its diameter is very small compared to pumping rates, so that storage in well is negligible.

INITIAL AND BOUNDARY CONDITIONS

- 1. At time = 0, drawdown = 0, at any distance.
- 2. At time > 0, drawdown = 0, at infinite distance.

Theis Unsteady State Solution - Equations

$$h_0 - h = s = \frac{Q}{4\pi T} W(u)$$

$$u = \frac{r^2 S}{4 Tt}$$

Variables:

Drawdown: $s = h_o - h$ hydraulic conductivity: K aquifer transmissivity: T = K baquifer thickness (confined) or saturated thickness (unconfined) : b Storativity: S well function: W(u)r = radial distance from center of well

In US practice – Equations are used with Q in gpm, T in gpd/ft and time t = days

Theis Unsteady State Solution – Well Function W(u))

Well function, W(u) a function of the term u Tabulated to provide a convenient method to estimate drawdown for given aquifer conditions and steady-state pumping rate, Q

и	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
×L	0.219	0.049	0.013	0.0038	0.0011	0.00036	0.000038	0.000012	0.000012
$\times 10^{-1}$	1.82	1.22	0.91	0.70	0.56	0.45	0.37	0.31	0.26
$\times 10^{-2}$	4.04	3.35	2.96	2,68	2,47	2.30	2.15	2.03	1.92
$ imes$ 10 $^{-3}$ -	6.33	5.64	5.23	4.95	4.73	4.54	4.39	4.26	4.14
$\times 10^{-4}$	8.63	7.94	7.53	7.25	7.02	6.84	6.69	6.55	6.44
$ imes 10^{-8}$	10.94	10.24	9.84	9.55	9.33	9.14	8.99	8.86	8.74
$\times 10^{-6}$	13.24	12.55	12.14	11.85	11.63	11.45	11.29	11.16	11.04
$\times 10^{-7}$	15.54	14.85	14.44	14.15	13.93	13.75	13.60	13.46	13.34
×10 ⁻⁸	17.84	17.15	16.74	16.46	16.23	16.05	15.90	15.76	15.65
$\times 10^{-9}$	20.15	19.45	19.05	18.76	18.54	18.35	18.20	18.07	17.95
$\times 10^{-10}$	22.45	21.76	21.35	21.06	20.84	20.66	20.50	20.37	20.25
$\times 10^{-11}$	24.75	24.06	23.65	23.36	23.14	22.96	22.81	22.67	22.55
$\times 10^{-12}$	27.05	26.36	25.96	25.67	25.44	25.26	25.11	24.97	24.86
$\times 10^{-13}$	29.36	28.66	28.26	27,97	27.75	27.56	27.41	27.28	27.16
$\times 10^{-14}$	31.66	30.97	30.56	30.27	30.05	29.87	29.71	29.58	29.46
$\times 10^{-18}$	33.96	33.27	32.86	32.58	32.35	32.17	32.02	31.88	31.76

Values of W(u) for Various Values of u

Source: After L. K. Wenzel, "Methods for Determining Permeability of Water Bearing Materials with Special Reference to Discharging Well Methods," U.S. Geological Survey, Water-Supply Paper 887, Washington, DC, 1942.

Example: Theis Method

Given:

A well is pumped at Q = 5400 m³/day Aquifer properties:

S = 0.0003;

T = 2200 m²/day (0.0025 m²/s) Compute:

Drawdown, $s = h_0-h$, at t = 10 days, r = 20 m

Solution:

Compute $u = 1.36.10^{-6}$ Well Function: W(u) = 12.99

$$h_0 - h = s = \frac{Q}{4\pi T} W(u)$$

Drawdown, s = {5400/(4x3.14x2200)} x 12.99 = 2.53 m

99

Problem 7: Drawdown by Theis method

Given:

•The following information for a confined aquifer:

- a) Transmissivity T = 1650 ft²/day
- b) Storage coefficient S = 0.0005.
- c) Aquifer thickness = 200 feet
- d) Well delivers a discharge of Q = 500 gpm

•Determine the drawdown at an observation well located 150 feet away after t=12 hours using Theis method. Use consistent equations.

(Note: 1 cfs = 448 gpm).

APPENDIX D

Unit Hydrograph

Additional Examples

Example: Unit Hydrograph Derivation

Problem Statement: Determine 1/2hr Unit Hydrograph using the excess rainfall hyetograph and Direct Runoff Hydrograph shown in the Table below. (Adapted from Chow el al (1988)

Excess	rainfall	hyetogr	aph	and	direct
runoff	hydrogra	aph			

Time $(\frac{1}{2} h)$	Excess rainf. ll (in)	Direct runoff (cfs)
1	1.06	428
2	1.93	1923
3	1.81	5297
4		9131
5		10625
6		7834
7		3921
8		1846
9		1402
10		830
11		313

Example: Unit Hydrograph Derivation (Cont.)

Solution by Deconvolution where N= M+J-1 or J= N-M+1 = 11-3+1=9 ordinates (Adapted from Chow el al (1988)

$$U_{1} = \frac{Q_{1}}{P_{1}} = \frac{428}{1.06} = 404 \text{ cfs/in}$$

$$U_{2} = \frac{Q_{2} - P_{2}U_{1}}{P_{1}} = \frac{1923 - 1.93 \times 404}{1.06} = 1079 \text{ cfs/in}$$

$$U_{3} = \frac{Q_{3} - P_{3}U_{1} - P_{2}U_{2}}{P_{1}} = \frac{5297 - 1.81 \times 404 - 1.93 \times 1079}{1.06} = 2343 \text{ cfs/in}$$
and similarly for the remaining ordinates
$$U_{4} = \frac{9131 - 1.81 \times 1079 - 1.93 \times 2343}{1.06} = 2506 \text{ cfs/in}$$

$$U_{5} = \frac{10625 - 1.81 \times 2343 - 1.93 \times 2506}{1.06} = 1460 \text{ cfs/in}$$

$$U_{6} = \frac{7834 - 1.81 \times 2506 - 1.93 \times 1460}{1.06} = 453 \text{ cfs/in}$$

$$U_{7} = \frac{3921 - 1.81 \times 1460 - 1.93 \times 453}{1.06} = 381 \text{ cfs/in}$$

$$U_{8} = \frac{1846 - 1.81 \times 453 - 1.93 \times 381}{1.06} = 274 \text{ cfs/in}$$

$$U_{9} = \frac{1402 - 1.81 \times 381 - 1.93 \times 274}{1.06} = 173 \text{ cfs/in}$$
HG

1∕₂ hr U

Problem : Derivation of Direct Runoff and Streamflow Hydrographs Using a Given Unit Hydrograph

Problem Statement:

The six-hour unit hydrograph of a watershed having a drainage area equal to 393 km² is as follows:

Time (h)	0	6	12	18	24	30	36	42
Uak hydrograph (m ³ /s·cm)	0	1.8	30.9	85.6	41.8	14.6	5.5	1.8

For a storm over the watershed having excess rainfall of 5 cm for the first six hours and 15 cm for the second six hours, compute the streamflow hydrograph, assuming constant baseflow of 100 m³/s.

Problem : Derivation of Direct Runoff and Streamflow Hydrographs Using a Given Unit Hydrograph (cont.)

Solution:

<u>Q3</u>		Area = Baseflow =	393 100	km² m³/s
		Rainfall	Direct	1
Time (hr)	UH (m ³ /s-cm)	Excess (cm)	Runoff (cfs)	Streamflow (cfs)
0	0		0.0	100.0
6	1.8	5	9.0	109.0
12	30.9	15	181.5	281.5
18	85.6	0	891.5	991.5
24	41.8	0	1493.0	1593.0
30	14.6	0	700.0	800.0
36	5.5	0	246.5	346.5
42	1.8	0	91.5	191.5
48	0	0	27.0	127.0
54	0	0	0.0	100.0

 $\begin{array}{l} Q_1 = P_1 U_1 = (5)(1.8) = 9 \\ Q_2 = P_2 U_1 + P_1 U_2 = (15)(1.8) + (5)(30.9) = 181.5 \\ Q_3 = P_3 U_1 + P_2 U_2 + P_1 U_3 = 0 + (15)(30.9) + (5)(85.6) = 891.5 \\ Q_4 = P_2 U_3 + P_1 U_4 = (15)(85.6) + (5)(41.8) = 1493 \end{array}$

2nd Method

	Rainfall	U1	U ₂	U ₃	U ₄	U ₅	Us	U7	Direct]
Time (hr)	Excess (cm)	1.8	30.9	85.6	41.8	14.6	5.5	1.8	Runoff (cfs)	Streamflow (cfs)
0								2	0.0	100.0
6	5	9						1	9.0	109.0
12	15	27	154.5						181.5	281.5
18	0		463.5	428					891.5	991.5
24	0			1284	209				1493.0	1593.0
30	0				627	73			700.0	800.0
36	0					219	27.5		246.5	346.5
42	0						82.5	9	91.5	191.5
48	0							27	27.0	127.0
54	0					1			0.0	100.0

Example : Derivation of Direct Runoff and Streamflow Hydrographs Using a Given Unit Hydrograph

Problem Statement:

 The six-hour unit hydrograph of a watershed having a drainage area equal to 393 km² is as follows:

Time (hr):	0	6	12	18	24	30	36	42
Unit hydrograph (m ³ /s/cm):	0	1.8	30.9	15.6	41.8	14.6	5.5	1.8

 For a storm over the watershed having the following excess rainfall depths, compute the streamflow hydrograph assuming a constant base flow of 100 m³/s.

Time (hr):	0	6	12
Rainfall Excess (cm):	0	5	15

Example: Derivation of Direct Runoff and Streamflow Hydrographs Using a Given Unit Hydrograph (cont.)

Solution:

<u>Q3</u>		Area = Baseflow =	393 100	km² m ³ /s
		Rainfall	Direct	1
Time (hr)	UH (m ³ /s-cm)	Excess (cm)	Runoff (cfs)	Streamflow (cfs)
0	0		0.0	100.0
6	1.8	5	9.0	109.0
12	30.9	15	181.5	281.5
18	85.6	0	891.5	991.5
24	41.8	0	1493.0	1593.0
30	14.6	0	700.0	800.0
36	5.5	0	246.5	346.5
42	1.8	0	91.5	191.5
48	0	0	27.0	127.0
54	0	0	0.0	100.0

 $Q_1 = P_1 U_1 = (5)(1.8) = 9$

 $\begin{array}{l} Q_2 = P_2 U_1 + P_1 U_2 = (15)(1.8) + (5)(30.9) = 181.5 \\ Q_3 = P_3 U_1 + P_2 U_2 + P_1 U_3 = 0 + (15)(30.9) + (5)(85.6) = 891.5 \\ Q_4 = P_2 U_3 + P_1 U_4 = (15)(85.6) + (5)(41.8) = 1493 \end{array}$

2nd Method

	Rainfall	U1	U ₂	Ua	U4	U ₅	Us	U7	Direct	
Time (hr)	Excess (cm)	1.8	30.9	85.6	41.8	14.6	5.5	1.8	Runoff (cfs)	Streamflow (cfs)
0									0.0	100.0
6	5	9							9.0	109.0
12	15	27	154.5				2		181.5	281.5
18	0		463.5	428					891.5	991.5
24	0			1284	209				1493.0	1593.0
30	0				627	73			700.0	800.0
36	0					219	27.5		246.5	346.5
42	0						82.5	9	91.5	191.5
48	0							27	27.0	127.0
54	0						0.000		0.0	100.0

Streamflow vs. Time

107

Example: Unit Hydrograph Derivation

Problem Statement: Determine 1/2hr Unit Hydrograph using the excess rainfall hyetograph and Direct Runoff Hydrograph shown in the Table below. (Adapted from Chow el al (1988)

Excess	rainfall	hyetogr	aph	and	direct
runoff	hydrogra	aph			

Time $(\frac{1}{2} h)$	Excess rainf. ll (in)	Direct runoff (cfs)
1	1.06	428
2	1.93	1923
3	1.81	5297
4		9131
5		10625
6		7834
7		3921
8		1846
9		1402
10		830
11		313
Example: Unit Hydrograph Derivation (Cont.)

Solution by Deconvolution where N= M+J-1 or J= N-M+1 = 11-3+1=9 ordinates

(Adapted from Chow el al (1988)

	$U_2 = \frac{Q_2}{Q_2}$	$\frac{1.0}{P_2U}$	$\frac{1}{1} = \frac{19}{10}$	9 <u>23 - 1</u> 1	.93 × 4	404 =	1079	cfs/in				
	$U_3 = \underline{Q_3}$ and simi	$\frac{-P_3U}{P}$	$\frac{1}{1} - \frac{P_2}{P_2}$	$\frac{U_2}{2} = \frac{2}{3}$	5297 — ng ordi	$1.81 \times$	404 -	- 1.93	3×10	<u>79</u> =	2343 cf	fs/in
		$U_4 =$	9131 - 10625	- 1.81 - 1.81	× 1079 1.06 × 2343	- 1.93 3 - 1.9	3×23	43 506	2506	cfs/in		
		$U_6 = \cdot$	7834 —	1.81->	1.06 < 2506 1.06	- 1.93	× 14	60 =	= 1460 453 c	fs/in		
	$U_7 = \frac{3921 - 1.81 \times 1460 - 1.93 \times 453}{1.06} = 381 \text{ cfs/in}$ $U_8 = \frac{1846 - 1.81 \times 453 - 1.93 \times 381}{1.06} = 274 \text{ cfs/in}$											
½ hr UHG		$U_9 =$	1402 —	1.81 >	1.06 < <u>381</u> - 1.06	- 1.93	× 274	= 17	/3 cfs/	'n		
	n U_n (cfs/in)	1 404	2 1079	3 2343	4 2506	5 1460	6 453	7 381	8 274	9 173	an a	

109