S.E. Exam Review: Timber Design

Mark McGinley

502-852-4068

m.mcginley@louisville.edu

Distribution of the webinar materials outside of your site is prohibited. Reproduction of the materials and pictures without a written permission of the copyright holder is a violation of the U.S. law.

Table of Contents

- Review Basics and Code Documents Loads, Design Methods (Slides 4 – 13)
- 2. Beams and Girder Design Timber and Glulams (Slides 14 65)
- Wood Column Design Timber, Glulam, Beam Columns (Slides 66 79)
- 4. Shear Walls and Diaphragms (Slides 80 93)
- 5. Connections (Slides 94 96)

NCEES Guide

- 1. Vertical Forces Exam Friday Breadth
 - Wood, 4 out of 40 questions: sawn beams, glue-laminated beams, columns, engineered lumber, bearing walls trusses, bolted, nailed, and screwed connection
- 2. Vertical Forces Exam Friday Depth
 - 4 1 hour problems, will include a wood structure.
- 3. Lateral Forces Exam Saturday Breadth
 - Wood, 3 out of 40 questions: shear walls, plywood diaphragms and subdiaphragms
- 4. Lateral Forces Exam Saturday Depth
 - 4 1 hour problems, may include a timber structure.

Focus on the bold topics. Use ASD.

Any timber design experience? – Courses or Design

Timber experience – feedback via chat

How many at site have

- A. Little or none
- B. A short course and/or a little design
- c. Design simple buildings/elements
- D. Design timber routinely
- E. Design timber in sleep -a timber wiz, etc.

As per NCEES, Use the NDS-2015 ASD/LRFD Standard

As per NCEES, Use the NDS-2015 ASD/LRFD Standard

<text><text><text><text><text><text><text>

As per NCEES, Use the AWC-SDPWS 2015 Standard

ASCE | KNOWLEDGE & LEARNING

As per NCEES, Use the NDS-2015 ASD/LRFD Standard

Also recommend manual

Wood Design Methods -

- Generally 3 methods used
- Prescriptive for conventional construction, limited to typical residential construction, span and height tables, not addressed
- <u>Allowable Stress Design (ASD) engineered, most</u> <u>common historically</u>, [f ≤ adjusted F], in NDS (National Design Standard)
- Load Resistance Factor Design (LRFD) newer. What I normally teach, but to keep it simple I am presenting ASD.

ASCE | KNOWLEDGE & LEARNING

ASD Load Combinations – IBC 2015/ASCE 7-10 VERT. & LATERAL

- $\square D + F$
- $\blacksquare D + H + F + L$
- $\blacksquare D + H + F + (L_r \text{ or } S \text{ or } R)$
- $D + H + F + 0.75(L) + 0.75(L_r \text{ or } S \text{ or } R)$
- D + H + F + (0.6W or 0.7E)
- $D + H + F + 0.75(0.6W) + 0.75L + 0.75(L_r \text{ or } S \text{ or } R)$
- D + H + F + 0.75(0.7E) + 0.75L + 0.75(S)
- $\blacksquare 0.6D + 0.6W + H$
- 0.6(D+F) + H + 0.7E

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber VERT. & LATERAL

		ASD only		ASD and LRFD										LRFD only			
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	petitive Member Factor	column Stability Factor	uckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor		
									Re	0	B		K _F	ф			
F _b ' = F _b	x	C _D	С _м	Ct	CL	C _F	C _{fu}	C _i	Cr	-	-	-	2.54	0.85	λ		
F _t ' = F _t	x	CD	C _M	Ct	-	C _F	-	C _i	-	-	-	-	2.70	0.80	λ		
F _v ' = F _v	x	CD	C _M	Ct	-	-	-	Ci	-	-	-	-	2.88	0.75	λ		
F _c ' = F _c	x	CD	C _M	Ct	-	C _F	-	Ci	-	C _P	-	-	2.40	0.90	λ		
$F_{c^{\perp}} = F_{c^{\perp}}$	x	-	C _M	Ct	-	-	-	Ci	-	-	-	Cb	1.67	0.90	-		
E' = E	x	-	См	Ct	-	-	-	Ci	-	-	-	-	-	-	-		
E _{min} ' = E _{min}	x	-	См	Ct	-	-	-	C _i	-	-	CT	-	1.76	0.85	-		

ASCE | KNOWLEDGE & LEARNING

11

Table 5.3.1 Applicability of Adjustment Factors for Structural Glued Laminated Timber VERT. & LATERAL

		ASD only		ASD and LRFD									LRFD only			
		ad Duration Factor	Vet Service Factor	emperature Factor	am Stability Factor ¹	Volume Factor ¹	Flat Use Factor	Curvature Factor	ss Interaction Factor	ar Reduction Factor	umn Stability Factor	earing Area Factor	Format Conversion Factor	Resistance Factor	ime Effect Factor	
		ΓC	>	Ĕ	Be				Stre	She	CO	ā	K _F	ф		
$F_{b}' = F_{b}$	х	C _D	C _M	Ct	C_L	Cv	C _{fu}	C _c	C_{I}	-	-	-	2.54	0.85	λ	
$F_t' = F_t$	х	CD	C _M	Ct	-	-	-	-	-	-	-	-	2.70	0.80	λ	
$F_v' = F_v$	х	C _D	C _M	Ct	-	-	-	-	-	C _{vr}	-	-	2.88	0.75	λ	
F _{rt} ' = F _{rt}	х	C _D	C _M	Ct	-	-	-	-	-	-	-	-	2.88	0.75	λ	
F _c ' = F _c	х	C _D	C _M	Ct	-	-	-	-	-	-	CP	-	2.40	0.90	-	
$F_{c^{\perp}} = F_{c^{\perp}}$	х	-	C _M	Ct	-	-	-	-	-	-	-	Cb	1.67	0.90	-	
E' = E	х	-	C _M	Ct	-	-	-	-	-	-	-	-	-	-	-	
E _{min} ' = E _{min}	х	-	C _M	Ct	-	-	-	-	-	-	-	-	1.76	0.85	-	
1. The beam s members (see	tabili 5.3.0	ty factor, C _L 6). Therefor	, shall no e, the les	ot apply s sser of th	simultane ese adju	eously w istment f	ith the vo actors sh	olume fac	ctor, C _V , /.	for struc	tural glue	ed lamin	ated timb	er bendi	ing	

Table 7.3.1 Applicability of Adjustment Factors for Prefabricated Wood I-Joists - VERT.

		ASD only		ASD an	d LRFD		L	LRFD only			
		ad Duration Factor	Wet Service Factor	emperature Factor	eam Stability Factor	Repetitive Member Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor		
		Γ	>		ă		Κ _F	ф			
$M'_r = M_r$	x	C _D	C _M	Ct	CL	Cr	K _F	0.85	λ		
$V_r' = V_r$	x	CD	C _M	Ct	-	-	K _F	0.75	λ		
$R'_r = R_r$	x	CD	C _M	Ct	-	-	K _F	0.75	λ		
EI' = EI	x	-	C _M	Ct	-	-	-	-	-		
$(EI)'_{min} = (EI)_{min}$	x	-	C _M	Ct	-	-	K _F	0.85	-		
K' = K	x	-	C _M	Ct	-	-	-	-	-		

ASCE | KNOWLEDGE & LEARNING

Wood Systems and Elements VERT. & LATERAL

Two Basic Types of Systems

Light Timber Systems

- Plywood
- Joists sawn timber or EWP (Eng. Wood Products)
- Beams sawn timber or EWP
- Stud Walls
- Posts columns, pipe columns

Light Timber Systems VERT. & LATERAL

Sawn Timber Floor Joists

Sawn Timber Stud Walls

ASCE | KNOWLEDGE & LEARNING

Light Timber Systems VERT. & LATERAL

Sawn timber trusses and other engineered products substituted for roof/floor joists and beams , usually design using load tables

Also heavy –

ASCE | KNOWLEDGE & LEARNING

Wood Systems and Elements VERT. & LATERAL

Heavy Timber System ("Post and Beams")

- Planks
- Glu-laminated beams and girders (sometimes sawn timber)
- Glu-laminated columns or posts

17

Wood Beams – Flexural Design VERT. & LATERAL

- General under flexure only
- Check bending capacity ($f_b \leq F'_{bASD}$)

Under service level loads

• Check shear sapacity ($f_{v} \leq F'_{vASD}$)

Under service level loads

• Check deflections ($\Delta_{\max} \leq \Delta_{\max \text{ allowed}}$)

Under service level live loads

Wood Design "Guess and Check" VERT.

Get basic layout, then

- 1. Determine span and spacing
- 2. Determine load max unfactored shear and moment.
- 3. Select size/species to ensure f_{bmax} and $f_{vmax} \leq F'_{bASD}$ and F'_{vASD} . (adjusted allowables)
- 4. Check deflect. Resize or reduce spacing or span if needed.

ASCE | KNOWLEDGE & LEARNING

Examples for Sawn Timber VERT.

Example Sawn Timber Beam VERT.

Design joists - max span 12 ft

Live load = $40 \times 16/12 = 53.3$ lb/ft

Dead load = $12 \times 16/12 = 16$ lb/ft

Max moment = $69.3 (12)^2/8 = 1,247.4 \text{ lb} \cdot \text{ft}$

Now either guess at size of joist or wood species and grade

Try a 2x10 $S = 1.5 (9.25)^2/6 = 21.4 \text{ in}^3$

 $A = 1.5 \times 9.25 = 13.9 \text{ in}^2$

See tables in NDS Supplement

ASCE | KNOWLEDGE & LEARNING

Look at the NDS Supplement VERT. & LATERAL

Section Tables Sawn Timber VERT. & LATERAL

					lable	18 56	ection	Prop	perti	es of a	standa	ara Dr	essea	(545)	Sawn	Lump	er	
						Standa	rd A	rea	X	X AXIS	Y-1	Y AXIS Moment	Appro	oximate w	-iaht in p	ounds per	linear for	of (lbs/
					Nominal	Dresse	ed o	of	Section	of	Section	of	Abbro	of pie	e when d	ensity of	wood equ	als:
					b x d	b x d	1 30	A	S _{xx}	Inerua I _{xx}	Syy	Inerua I _{yy}	25 lbs/ft ³	30 lbs/ft ⁸	35 lbs/ft ⁸	40 lbs/ft ^a	45 lbs/ft ^a	50 lbs
					Boards ¹	in. x ir	n. ii	n.*	in."	in."	in."	in."						
					1 x 3 1 x 4	3/4 x 2- 3/4 x 3-	1/2 1.0 1/2 2.0	875 625	0.781	0.977 2.680	0.234 0.328	0.088 0.123	0.326 0.456	0.391 0.547	0.456 0.638	0.521 0.729	0.586	0.65
					1 x 6 1 x 8	3/4 × 7-	4. 1/4 5.	125 438	3.781 6.570	10.40 23.82	0.516 0.680	0.193 0.255	0.716 0.944	0.859 1.133	1.003	1.146 1.510	1.289 1.699	1.43
,					1 x 10	3/4 x 9-	1/4 6.	938	10.70	49.47 88.99	0.867	0.325	1.204 1.465	1.445 1.758	1.686 2.051	1.927 2.344	2.168 2.637	2.40 2.93
			X->	(AXIS		Y-1	AXI	S)e	cking (see 1.953	NDS 4.1.3 0.938	3.5) 0.703	0.651	0.781	0.911	1.042	1.172	1.30
	Standard	Area		Moment			Mor	ner	nt	5.359 11.39	1.313 1.688	0.984	0.911 1.172	1.094 1.406	1.276 1.641	1.458 1.875	1.641 2.109	1.82
Nominal	Dressed	of	Section	of	Sec	ction	0	of		20.80 47.63	2.063 2.719	1.547 2.039	1.432 1.888	1.719 2.266	2.005 2.643	2.292 3.021	2.578 3.398	2.86
Size	Size (S4S)	Section	Modulus	Inertia	Mod	dulus	Ine	ertia	ı R	98.93 178.0	3.469 4.219	2.602 3.164	2.409 2.930	2.891 3.516	3.372 4.102	3.854 4.688	4.336 5.273	4.81
bxd	bxd	Α	S	I	5	S	L		2	290.8 8.932	4.969 3.646	3.727 4.557	3.451	4.141	4.831	5.521 2.431	6.211 2.734	6.90
	in vin	in ²	in ³	in ⁴		- yy n ³	in	yy 4	,	18.98 34.66	4.688 5.729	5.859 7.161	1.953 2.387	2.344 2.865	2.734 3.342	3.125 3.819	3.516 4.297	3.90
D 1 1	III. A III.					ı.		I.	-Ļ	79.39 164.9	7.552 9.635	9.44D 12.04	3.147 4.015	3.776 4.818	4.405 5.621	5.035 6.424	5.664 7.227	6.293
Boards.										296.6 484.6	11.72 13.80	14.65 17.25	4.883 5.751	5.859 6.901	6.836 8.051	7.813 9.201	8.789 10.35	9.76 11.5
1x3	3/4 x 2-1/2	1.875	0.781	0.977	0.	234	0.0	J88	2	738.9	15.89 7.146	19.86 12.51	6.619 2.127	7.943	9.266 2.977	10.59 3.403	11.91 3.828	4.25
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.3	328	0.1	123	1	26.58 48.53	9.188 11.23	16.08 19.65	2.734 3.342	3.281 4.010	3.828 4.679	4.375 5.347	4.922 6.016	5.46
1x6	3/4 x 5-1/2	4.125	3.781	10.40	0.	516	0.1	193	3	111.1 230.8	14.80 18.89	25.90 33.05	4.405 5.621	5.286 6.745	6.168 7.869	7.049 8.993	7.930 10.12	8.811
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.0	680	0.2	255	3	415.3 678.5	22.97 27.05	40.20 47.34	6.836 8.051	8.203 9.661	9.570 11.27	10.94 12.88	12.30 14.49	13.6
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.0	867	0.3	325	6	1034	31.14	54.49	9.266	11.12	12.97	14.83	16.68	18.53
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.0	055	0.3	396	<u>3.3</u>	34.17	15.19	34.17	3.516	4.219	4.922	5.625	6.328	7.03
Dimensior	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS	64.1.3	3.5)		3	76.26 193.4	27.73 37.81	76.26 104.0	5.252 7.161	6.302 8.594	7.352 10.03	8.403 11.46	9.453 12.89	10.5
2x3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.9	938	0.7	703	3	263.7 535.9	70.31 89.06	263.7 334.0	9.766 12.37	11.72 14.84	13.67 17.32	15.63 19.79	17.58 22.27	19.53
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.3	313	0.9	984	3	678.8 1204	142.9 173.0	678.8 821.7	15.67 18.97	18.80 22.76	21.94 26.55	25.07 30.35	28.20 34.14	31.34 37.93
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.0	688	1.2	266	5	1458 2358	253.5 297.6	1458 1711	22.96 26.95	27.55 32.34	32.14 37.73	36.74 43.13	41.33 48.52	45.9 53.9
2 x 6	1-1/2 x 5-1/2	8 250	7 56	20.80	21	063	15	547	1	2768 4189	410.1 470.8	2768 3178	31.64 36.33	37.97 43.59	44.30 50.86	50.63 58.13	56.95 65.39	63.20 72.60
2 x 8	1-1/2 x 7-1/4	10.88	13 14	47.63	2	719	20	339	3	4810 6923	620.6 700.7	4810 5431	41.71 47.09	50.05 56.51	58.39 65.93	66.74 75.35	75.08 84.77	83.42 94.18
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3	469	26	302	2	7816 10813	893.2 995.3	7816 8709	53.17 59.24	63.80 71.09	74.44 82.94	85.07 94.79	95.70 106.6	106.3
2 x 12	$1_1/2 \times 11_1/4$	16.88	31.64	178.0	4	219	3	164		12049 16150	1236 1363	12049 13285	66.02 72.79	79.22 87.34	92.4 101.9	105.6 116.5	118.8 131.0	132. 145.
2×12 2×14	$1_1/2 \times 13_1/4$	19.88	43.89	200.8	4	060	37	727		1/806 23252	1656	1/806 19463	80.25	96.30	112.4	128.4 140.3	144.5 157.9	160.
2 14	0.1/2 0.1/9	0.00	-5.03	200.0	4.	000	5.1	~~~		25415	2163	25415	95.88	115.1	134.2	153.4	1/2.6	191.
																	2	23

Check Bending – ASD VERT. & LATERAL

Sawn Timber Design Equation

 $f_{bmax} = M_{max}/S \le F'_b$

 $F_b' = F_b C_D C_M C_t C_L C_F C_{fu} C_i C_r$

 F_b is from the tables depending on species, grades, size, grading rules etc. See Supplement.

Bending VERT. & LATERAL

 C_M = Tables (4 A, B, C, D, E, F) – See Supplement

= 0.85 or 1.0 for visually graded sawn timber

4A (2 or 4) or 4D (5x5 or larger) when EMC > 19% for extended time

Note $C_M = 1.0$ if $(F_b C_F) \le 1,150$ psi

$C_t = 1.0$ for $T \le 100^\circ$ F (2.3.3 in code)

Table 2.3.3 Temperature Factor, C _t										
Reference Design	In-Service Moisture		C _t							
Values	Conditions ¹	$T \leq 100^{\circ}\mathrm{F}$	$100^{\circ}\mathrm{F} < \mathrm{T} \le 125^{\circ}\mathrm{F}$	$125^\circ F < T \le 150^\circ F$						
F _t , E, E _{min}	Wet or Dry	1.0	0.9	0.9						
	Dry	1.0	0.8	0.7						
$\mathbf{F}_{\mathrm{b}}, \mathbf{F}_{\mathrm{v}}, \mathbf{F}_{\mathrm{c}}, \text{ and } \mathbf{F}_{\mathrm{c}^{\perp}}$	Wet	1.0	0.7	0.5						

1. Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, and wood structural panels are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, and 9.3.3, respectively.

ASCE | KNOWLEDGE & LEARNING

25

Adjustment Factors VERT. & LATERAL

Table 4A Adjustment Factors

Repetitive Member Factor, C, Bending design values, F_{bs} for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, C, e 11.5, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar member which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Wet Service Factor, C_M When dimension lumber is used where moisture con-tent will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

he following uses: Wet Service Factors, C_{M} $r_{i} = F_{e\perp} = F_{e} = E$ and E_{abi} $\circ \alpha$

Flat Use Factor, C_{t_h} Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design values, F_h shall also be multiplied by the following flat use factors:

Flat Use Factors, C _{fu}								
Width	Thickness (breadth)						
(depth)	2" & 3"	4"						
2" & 3"	1.0	1.0						

4"	11	1.0
5"	11	1.05
6"	1.15	1.05
8"	1.15	1.05
10" & wider	1.2	1.1

NOTE To facilitate the use of Table 4A, shading has been employed to distinguish design values based on a 4" nominal width (Construction, Standard, and Uil-ity grades) or a 6" nominal width (Stud grade) from distinguishes based on a Uil-menical width (Schort design values based on a 12" nominal width (Select Structural, No.1 & Btr, No.1, No.2, and No.3 grades)

Size Factor, Cr Tabulated bending, tension, and compression parallel to grain design values for dimension lumber 2* to 4* thick shal be multiplied by the following size factors: Size Factors, C.

		F		Ft	Fe
		Thickness	(breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size factors	
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	01.0.01	0.4		0.4	0.6

F'_b VERT. & LATERAL

 C_F = for sawn timber

Size Factor, C_F

Tabulated bending, tension, and compression parallel to grain design values for dimension lumber 2" to 4" thick shall be multiplied by the following size factors:

Size Factors, C _F										
		F	b	Ft	Fc					
Question		Thickness	(breadth)							
Glades	width (depth)	2" & 3" 4"								
	2", 3", & 4"	1.5	1.5	1.5	1.15					
Select Structural, No. 1 & Btr, No. 1,	5"	1.4	1.4	1.4	1.1					
	6"	1.3	1.3	1.3	1.1					
	8"	1.2	1.3	1.2	1.05					
	10"	1.1	1.2	1.1	1.0					
	12"	1.0	1.1	1.0	1.0					
	14" & wider	0.9	1.0	0.9	0.9					
	2", 3", & 4"	1.1	1.1	1.1	1.05					
Stud	5" & 6"	1.0	1.0	1.0	1.0					
	8" & wider	Use No.	3 Grade tabulated d	esign values and siz	e factors					
Construction, Standard	2", 3", & 4"	1.0	1.0	1.0	1.0					
1 14/14	4"	1.0	1.0	1.0	1.0					
Guility	2" & 3"	0.4	-	0.4	0.6					

ASCE | KNOWLEDGE & LEARNING

27

F'_b VERT. & LATERAL

 C_{fu} = flat use factor – when lumber is turned flat

Flat Use Factors, C _{fu}								
	Thickness (breadth)							
Width (depth)	2" & 3"	4"						
2" & 3"	1.0	-						
4"	1.1	1.0						
5"	1.1	1.05						
6"	1.15	1.05						
8"	1.15	1.05						
10" & wider	1.2	1.1						

 $\begin{array}{l} C_{i} = Incising \ factor - when \ dimension \ lumber \ is \ grooved > 0.4" \ \& \ up \ to \ 3/8" \ long - \ density \ 1,100/ft^{2} \\ Then \ C_{i} = 0.8 \ For \ F_{b}, \ F_{t}, \ F_{c}, \ F_{v} \\ For \ E \ and \ E_{min} \ C_{i} = 0.95. \end{array}$

VERT. & LATERAL

 C_r = repetitive member factor – must have at least three members, 2-4 thick, spaced up 2' apart and joined by other members such as floors then = 1.15, otherwise = 1.0.

 C_D = Duration Factor – see Appendix B – Use shortest for a given load combo.

F'_b

Table 2.3.2 Frequently Used Load Duration Factors, C _D ¹									
Load Duration	CD	Typical Design Loads							
Permanent	0.9	Dead Load							
Ten years 1.0 Occupancy Live Load									
Two months	onths 1.15 Snow Load								
Seven days	1.25	Construction Load							
Ten minutes	1.6	Wind/Earthquake Load							
Impact ²	2.0	Impact Load							
1. Load duration factors shal reference modulus of elastici reference compression perpe- deformation limit	l not apply to r ty for beam ar endicular to gr	eference modulus of elasticity, E, nd column stability, E _{min} , nor to ain design values, F _{cl} , based on a							

29

Bending VERT. & LATERAL

C_L = Stability factor (braced vs. unbraced beams)

See Spec $3.3.3 - C_{L} = 1.0$ if braced, blocked, or near square. See requirements of Section 4.4.1 for sawn timber only.

$$F_{bE} = \frac{1.2E'_{min}}{R_B^2}$$

3.3.3.6 The slenderness ratio, R_B , for bending members shall be calculated as follows:

$$R_B = \sqrt{\frac{\ell_e d}{b^2}} \tag{3.3-5}$$

3.3.3.7 The slenderness ratio for bending members, R_B , shall not exceed 50.

3.3.3.8 The beam stability factor shall be calculated as follows:

$$C_L = \frac{1 + (F_{bE}/F_b^*)}{1.9} - \sqrt{\left[\frac{1 + (F_{bE}/F_b^*)}{1.9}\right]^2 - \frac{F_{bE}/F_b^*}{0.95}}$$
(3.3-6)

Table 3.3.3 Effective Length, ℓ_e , for Bending Members **VERT. & LATERAL**

Cantilever ¹	where $\ell_u/d < 7$		where $\ell_u/d \ge 7$				
Uniformly distributed load	$\ell_{\rm e} = 1.33 \ \ell_{\rm u}$		$l_{\rm e} = 0.90 l_{\rm u} + 3d$				
Concentrated load at unsupported end	ℓ _e = 1.87 ℓ _u		$l_{\rm e} = 1.44 l_{\rm u} + 3d$				
Single Span Beam ^{1,2}	where $\ell_u/d < 7$		where $\ell_u/d \ge 7$				
Uniformly distributed load	$\ell_{\rm e} = 2.06 \ \ell_{\rm u}$		$\ell_{\rm e}$ = 1.63 $\ell_{\rm u}$ + 3d				
Concentrated load at center with no intermediate lateral support	ℓ _e = 1.80 ℓ _u		$\ell_{\rm e}$ = 1.37 $\ell_{\rm u}$ + 3d				
Concentrated load at center with lateral support at center		$\ell_{\rm e} = 1.11 \ \ell_{\rm u}$					
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		ℓ _e = 1.68 ℓ _u					
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points		$\ell_{\rm e}$ = 1.54 $\ell_{\rm u}$					
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points		ℓ _e = 1.68 ℓ _u					
Five equal concentrated loads at 1/6 points with lateral support at 1/7 points		ℓ _e = 1.73 ℓ _u					
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points		ℓ _e = 1.78 ℓ _u					
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application		$\ell_{\rm e}$ = 1.84 $\ell_{\rm u}$					
Equal end moments		ℓ _e = 1.84 ℓ _u					
1. For single span or cantilever bending members with loading conditions not specified in Table 3.3.3: $l_e = 2.06 \ l_u$ where $l_u/d < 7$ $l_e = 1.63 \ l_u + 3d$ where $7 \le l_u/d < 14.3$ $l_e = 1.84 \ l_u$ where $l_u/d > 14.3$							

ASCE | KNOWLEDGE & LEARNING

31

F_{b} **VERT. & LATERAL**

Table 4A Reference Design Values for Visually Graded Dimension Lumber (Cont.) (2" - 4" thick)^{3,2,3} (All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value distinct for for sol.)

F_b Values listed in Supplement for varies species and grades of lumber

		USE	WITH TAI	BLE 4A A	DJUSTMENT	FACTORS				
				Design v	alues in pounds p	er square inch (j	si)			
Receive and commented	C		Tension	Shear	Compression	Compression			1	Gradin
species and commercial	Size		parallel	parallel	perpendicular	parallel			Specific	Rules
grade	classification	Bending	to grain	to grain	to grain	to grain	Modulus o	f Elasticity	Gravity ⁴	Agenc
		E.	F.	F.	Eau	E.	E	Emin	6	
RED OAK	1									
Select Structural		1.150	675	170	820	1.000	1.400.000	510.000		
No. 1		825	500	170	820	825	1.300.000	470.000		
No. 2	2" & wider	800	475	170	820	625	1,200,000	440.000		
No. 3		475	275	170	820	375	1.100.000	400.000		
Stud	2" & wider	625	375	170	820	400	1,100.000	400.000	0.67	NELMA
Construction	2 d moer	925	550	170	820	850	1,200,000	440.000		
Standard	2" - 4" wide	525	300	170	820	850	1 100 000	400.000		
Utility		250	150	170	820	425	1.000.000	370.000		
REDWOOD										
Class Structure!		4.760	4.000	180	850	1.050	1 400 000	E10.000	0.44	
Colect Structural		1 250	900	100	050	1,550	1,400,000	610,000	0.44	
Select Structural serve annia		1,350	000	100	425	1,300	1,400,000	400,000	0.44	
Select Structural, open grain		1,100	625	100	420	1,100	1,100,000	400,000	0.37	
No. 1	Of a subday	975	075	100	405	1,200	1,300,000	470,000	0.44	
No. 1, open grain	2 a wider	775	400	100	420	900	1,100,000	400,000	0.37	
N0.2		925	020	100	650	950	1,200,000	440,000	0.44	
No. 2, open grain		725	425	160	425	700	1,000,000	370,000	0.37	RIS
No. 3		525	300	160	650	550	1,100,000	400,000	0.44	
No. 3, open grain		425	250	160	425	400	900,000	330,000	0.37	
Stud	2" & wider	575	325	160	425	450	900,000	330,000	0.44	
Construction		825	475	160	425	925	900,000	330,000	0.44	
Standard	2" - 4" wide	450	275	160	425	725	900,000	330,000	0.44	
Utility		225	125	160	425	475	800,000	290,000	0.44	
SPRUCE-PINE-FIR										
Select Structural		1,250	700	135	425	1,400	1,500,000	550,000		
No. 1/ No. 2	2" & wider	875	450	135	425	1,150	1,400,000	510,000		
No. 3		500	250	135	425	650	1,200,000	440,000		
Stud	2" & wider	675	350	135	425	725	1,200,000	440,000	0.42	NLGA
Construction		1,000	500	135	425	1,400	1,300,000	470,000		
Standard	2" - 4" wide	550	275	135	425	1,150	1,200,000	440,000		
Utility		275	125	135	425	750	1,100,000	400,000		
SPRUCE-PINE-FIR (SOUTH)										
Select Structural		1,300	575	135	335	1,200	1,300,000	470,000		
No. 1		875	400	135	335	1,050	1,200,000	440,000		
No. 2	2" & wider	775	350	135	335	1,000	1,100,000	400,000		NELM/
No. 3		450	200	135	335	575	1,000,000	370,000		NSLB
Stud	2" & wider	600	275	135	335	625	1,000,000	370,000	0.38	WCLIB
Construction		875	400	135	335	1,200	1,000,000	370,000		WWPA
Standard	2" - 4" wide	500	225	135	335	1,000	900,000	330,000		
Utility		225	100	135	335	075	900,000	330,000		
WESTERN CEDARS										
Select Structural		1 000	600	155	425	1 000	1 100 000	400.000		
No.1		725	425	155	425	825	1 000 000	370.000		
No 2	2" & wider	700	425	155	425	050	1 000 000	370.000		
No.3		400	250	155	425	375	900 000	330,000		WOUR
Stud	2ª 8 midae	550	225	155	425	400	000,000	220,000	0.36	MANADA
	2 a woodr	900	475	165	425	850	900,000	330.000		awe A
Construction			and the second se					and a second		

F_b – Choose from Table VERT. & LATERAL

Species and commercial grade	Size classification	Bending F _b	Tension parallel to grain F _t
REDWOOD			_
Clear Structural Select Structural No. 1 No. 1 No. 2 No. 2, open grain No. 3 No. 3, open grain Stud Construction Standard Utility	2" & wider 2" & wider 2" - 4" wide	1,750 1,350 1,100 975 775 925 725 525 425 525 425 825 450 225	
SPRUCE-PINE-FIR			-
Select Structural No. 1/ No. 2 No. 3	2" & wider	1,250 875 500	
Stud	2" & wider	675	
Standard Utility	2" - 4" wide	550 275	
SPRUCE-PINE-FIR (SOUTH) Select Structural		1,300	

ASCE | KNOWLEDGE & LEARNING

For the Sawn Timber Beam (Joist) Example VERT.

 $F_{b'req} = M/S = (1,247.1/21.4 \text{ in}^3)12 = 699 \text{ psi}$

 $F_b' = C_D C_M C_t C_L C_F C_{fu} C_i C_r F_b$

Dry service, normal temps, no incisions $C_t = C_M = C_i = 1.0$ Braced by sheathing & bridging so $C_L = 1.0$, on edge $C_{fu} = 1.0$, (D+L) load $C_D = 1.0$ Multiple member so $C_r = 1.15$, $C_F = 1.1$ for #1-3 for 2" width So F_b must be $\geq 699/1.15(1.1)$ = 553 psi Choose a species and grade with $F_b \geq 553$ psi

Size Factor, C_r Tabulated bending, tension, and compression parallel to grain design values for be multiplied by the following size factors:

		F _b	
		Thickness (breadth)
Grades	Width (depth)	2" & 3"	4"
	2", 3", & 4"	1.5	1.5
Select	5"	1.4	1.4
Structural,	6"	1.3	1.3
No.1 & Btr,	8"	1.2	1.3
No.1, No.2,	10"	1.1	1.2
No.3	12"	1.0	1.1
	14" & wider	0.9	1.0
	2", 3", & 4"	1.1	1.1
Stud	5" & 6"	1.0	1.0
	8" & wider	Use No.3 Grade t	abulated d
Construction, Standard	2", 3", & 4"	1.0	1.0
Utility	4"	1.0	1.0
	2" & 3"	0.4	_

ASCE | KNOWLEDGE & LEARNING

$\rm F_{b}$ – Choose from Table 4A $\,$ VERT. & LATERAL

				Design va	alues in pounds p	er square inch (p	osi)	
Species and commercial	Sizo		Tension	Shear	Compression	Compression		
arade	classification		parallel	parallel	perpendicular	parallel		
grado	olucomouton	Bending	to grain	to grain	to grain	to grain	Modulus o	f Elasticity
		Fb	Ft	Fv	Fal	Fc	E	Emin
RED OAK								
Select Structural		1,150	675	170	820	1,000	1,400,000	510,000
No. 1	2" Quidor	825	500	170	820	825	1,300,000	470,000
No. 2	Z & wider	800	475	170	820	625	1,200,000	440,000
No. 3		475	275	170	820	375	1,100,000	400,000
Stud	2" & wider	625	375	170	820	400	1,100,000	400,000
Construction		925	550	170	820	850	1,200,000	440,000
Standard	2" - 4" wide	525	300	170	820	650	1,100,000	400,000
Utility		250	150	170	820	425	1,000,000	370,000
REDWOOD								
Clear Structural		1,750	1,000	160	650	1,850	1,400,000	510,000
Select Structural		1,350	800	160	650	1,500	1,400,000	510,000
Select Structural, open grain		1,100	625	160	425	1,100	1,100,000	400,000
No. 1		975	575	160	650	1,200	1,300,000	470,000
No. 1, open grain	2" & wider	775	450	160	425	900	1,100,000	400,000
No. 2		925	525	160	650	950	1,200,000	440,000
No. 2, open grain		725	425	160	425	700	1,000,000	370,000
No. 3		525	300	160	650	550	1,100,000	400,000
No. 3, open grain		425	250	160	425	400	900,000	330,000
Stud	2" & wider	575	325	160	425	450	900,000	330,000
Construction		825	475	160	425	925	900,000	330,000
Standard	2" - 4" wide	450	275	160	425	725	900,000	330,000
Utility		225	125	160	425	475	800,000	290,000
SPRUCE-PINE-FIR								
Select Structural		1.250	700	135	425	1.400	1.500.000	550.000
No. 1/ No. 2	2" & wider	875	450	135	425	1,150	1,400,000	510,000
No. 3		500	250	135	425	650	1,200,000	440,000
Stud	2" & wider	675	350	135	425	725	1,200,000	440,000
Construction		1,000	500	135	425	1,400	1,300,000	470,000
Standard	2" - 4" wide	550	275	135	425	1,150	1,200,000	440,000
Utility		275	125	135	425	750	1,100,000	400,000

ASCE | KNOWLEDGE & LEARNING

Example Sawn Timber Beam VERT.

A No 1 or 2 SPF 2 x 10 would work

 $F_b = 875 \ psi > 553 \ (F_b \ required)$

Look at shear design for sawn timber beams

Shear Design – Sawn Timber VERT. & LATERAL

 $f_{v} \leq F_{v}'$

 $f_v = VQ/Ib$ & for rectangular cross sections

 $f_{vmax} = 1.5(V/A)$

 $F_{\nu ASD}' = C_D C_M C_t C_i F_{\nu}$

 $C_M = 0.97$ for shear wet service

= 1.0 for dry service

The rest is the same

for bending.

ASCE | KNOWLEDGE & LEARNING

		ASD only					ASD an	d LRF	D				L	RFD on	ly
		-oad Duration Factor	Wet Service Factor	Temperature Factor	3eam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	petitive Member Factor	olumn Stability Factor	ickling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
		_							Re	õ	B		K _F	¢	
$F_b^{\circ} = F_b$	×	CD	C _M	Ct	CL	C _F	Cfu	Ci	Cr	-		-	2.54	0.85	λ
F_t = F_t	x	CD	C _M	Ct	-	C _F	-	Ci	-	-		-	2.70	0.80	λ
F _v ' = F _v	x	CD	C _M	Ct	-		-	Ci	-	-	-	-	2.88	0.75	λ
$F_c' = F_c$	x	CD	C _M	Ct	-	C _F	-	Ci		Cp	-	-	2.40	0.90	λ
$F_{\mathrm{c}^{\perp}}=F_{\mathrm{c}^{\perp}}$	x	-	C _M	Ct	-		-	Ci	-	-	-	Cb	1.67	0.90	
E' = E	x	-	C _M	Ct	-		-	Ci	-	-	-	-	-		
E_{\min} ' = E_{\min}	x	-	C _M	Ct	-		-	Ci	-	-	CT	-	1.76	0.85	-

37

Shear Design - VERT. & LATERAL

Can reduce shear and design for shear at d from supports

If notched - look to Section 3.4.3 for certain conditions or use mechanics

For Sawn Timber Beam (Joist) Example VERT.

 $f_{vmax} = 1.5 V/A = (1.5(69.3)(12)/2)(1/13.9) = 44.9 \text{ psi}$

Only C_D , C_m and C_t – all = 1.0

SPF (any grade) has a $F_{vASD} = 135$ psi $F'_{vASD} = C_D C_M C_t C_i F_v = 1(1)1(1)(135) = 135$ psi OK in Shear – 135 psi > 44.9 psi Note should add the weight of the joist and re-check stresses – by inspection OK

ASCE | KNOWLEDGE & LEARNING

Deflections VERT.

Service Level Loads Deflection

Limit live load deflections to L/360 or L/240

Long term effects - creep

 $\Delta_r = K_{cr} \Delta_{LT} + \Delta_{ST}$

Where:

 K_{cr} = time dependent deformation (creep) factor

= 1.5 for seasoned lumber, structural glued laminated timber, prefabricated wood l-joists, or structural composite lumber used in dry service conditions as defined in 4.1.4, 5.1.5, 7.1.4, and 8.1.4, respectively.

= 2.0 for structural glued laminated timber used in wet service conditions as defined in 5.1.5.

= 2.0 for wood structural panels used in dry service conditions as defined in 4.1.4.

= 2.0 for unseasoned lumber or for seasoned lumber used in wet service conditions as defined in 4.1.4.

 Δ_{LT} = immediate deflection due to the long-term component of the design load

 Δ_{ST} = deflection due to the short-term or normal component of the design load

Example Sawn Timber Joist - VERT. Check deflections – only short term (2x10) $I = 1.5 (9.25)^3/12 = 98.9 \text{ in}^4$ $W_L = 1.33(40) = 53.3 \text{ lb/ft}$ $\Delta_{max} = 5(53.3)(12)^4(12)^3/[384(510,000)98.9] = 0.49 \text{ in}.$ = L/292 What's wrong with this?

Use 2x10 x 16" OC – SPF No. 2 or better

E from Table 4A for Light Members VERT. & LATERAL

		ize Design values in pounds per square inch (psi)								
Species and commercial	Sizo		Tension	Shear	Compression	Compression				
grade	classification		parallel	parallel	perpendicular	parallel				
grude	clussification	Bending	to grain	to grain	to grain	to grain	Modulus o	f Elasticity		
		Fb	Ft	Fv	Fal	Fc	E	Emin		
RED OAK										
Select Structural		1,150	675	170	820	1,000	1,400,000	510,000		
No. 1	2" Quider	825	500	170	820	825	1,300,000	470,000		
No. 2	2 & Wider	800	475	170	820	625	1,200,000	440,000		
No. 3		475	275	170	820	375	1,100,000	400,000		
Stud	2" & wider	625	375	170	820	400	1,100,000	400,000		
Construction		925	550	170	820	850	1,200,000	440,000		
Standard	2" - 4" wide	525	300	170	820	650	1,100,000	400,000		
Utility		250	150	170	820	425	1,000,000	370,000		
REDWOOD										
Clear Structural		1,750	1,000	160	650	1,850	1,400,000	510,000		
Select Structural		1,350	800	160	650	1,500	1,400,000	510,000		
Select Structural, open grain		1,100	625	160	425	1,100	1,100,000	400,000		
No. 1		975	575	160	650	1,200	1,300,000	470,000		
No. 1, open grain	2" & wider	775	450	160	425	900	1,100,000	400,000		
No. 2		925	525	160	650	950	1,200,000	440,000		
No. 2, open grain		725	425	160	425	700	1,000,000	370,000		
No. 3		525	300	160	650	550	1,100,000	400,000		
No. 3, open grain		425	250	160	425	400	900,000	330,000		
Stud	2" & wider	575	325	160	425	450	900,000	330,000		
Construction		825	475	160	425	925	900,000	330,000		
Standard	2" - 4" wide	450	275	160	425	725	900,000	330,000		
Utility		225	125	160	425	475	800,000	290,000		
SPRUCE-PINE-FIR										
Select Structural		1,250	700	135	425	1,400	1,500,000	550,000		
No. 1/ No. 2	2" & wider	875	450	135	425	1,150	1,400,000	510,000		
No. 3		500	250	135	425	650	1,200,000	440,000		
Stud	2" & wider	675	350	135	425	725	1,200,000	440,000		
Construction		1,000	500	135	425	1,400	1,300,000	470,000		
Standard	2" - 4" wide	550	275	135	425	1,150	1,200,000	440,000		
Utility		275	125	135	425	750	1,100,000	400,000		

ASCE | KNOWLEDGE & LEARNING

Example Sawn Timber Joist VERT. & LATERAL

Check deflections - only short term

$$I = 1.5 (9.25)^3 / 12 = 98.9 \text{ in}^4$$

 $\Delta_{max} = 5(53.3)(12)^4(12)^3/[384(1, 400, 000)98.9] = 0.17$ in.

= L/801 Less than L/360 or L/480 OK

<u>Use 2x10 x 16" OC – SPF No. 2 or better</u>

Heavy Timber Beam Design -VERT. & LATERAL

- The same design procedures as before for sawn timber, but use Table 4D for heavy timbers to get some factors and reference stresses (F_b, F_v, etc.)
- Heavy Timbers are usually glulams glulam beams designed essentially the same, but again, some adjustment factors are different from sawn timber
- Also, reference stresses and sections are different Tables
 5A, B, C, D

ASCE | KNOWLEDGE & LEARNING

Glued Laminated Timbers - VERT. & LATERAL

- Glued-laminated timbers are made up of wood laminations, or "lams" that are face bonded (glued) together with waterproof adhesives.
- The grain of all laminations run parallel with the length of the member. Lams are typically less than 2" inches thick.
- Glulam range in net widths from 2 1/2 to 10 3/4 inches, although nearly any member width can be produced.

Table 5.3.1 Applicability of Adjustment Factors for Structural Glued Laminated Timber - VERT. & LATERAL

			ASD only					ASD an	d LRFC)				LI	RFD on	ly
			oad Duration Factor	Wet Service Factor	emperature Factor	eam Stability Factor ¹	Volume Factor ¹	Flat Use Factor	Curvature Factor	ess Interaction Factor	ear Reduction Factor	lumn Stability Factor	searing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
			ت	_		Be				Str	sh	ပိ	ш	K _F	ф	-
	F_{b} ' = F_{b}	x	CD	C _M	Ct	C_L	Cv	C _{fu}	C _c	CI	-	-	-	2.54	0.85	λ
	F_t ' = F_t	x	C _D	C _M	Ct	-	-	-	-	-	-	-	-	2.70	0.80	λ
	$F_v' = F_v$	x	C _D	C _M	Ct	-	-	-	-	-	C _{vr}	-	-	2.88	0.75	λ
	F_{rt} ' = F_{rt}	x	C _D	C _M	Ct	-	-	-	-	-	-	-	-	2.88	0.75	λ
	$F_c' = F_c$	x	C _D	C _M	Ct	-	-	-	-	-	-	CP	-	2.40	0.90	-
	$F_{c^{\perp}}$ ' = $F_{c^{\perp}}$	x	-	C _M	Ct	-	-	-	-	-	-	-	Cb	1.67	0.90	-
	E' = E	x	-	C _M	Ct	-	-	-	-	-	-	-	-	-	-	-
	E _{min} ' = E _{min}	x	-	C _M	Ct	-	-	-	-	-	-	-	-	1.76	0.85	-
	1. The beam s members (see	stabili 5.3.	ty factor, C _L 6). Therefor	, shall no e, the les	ot apply s sser of th	simultane ese adju	eously wistment f	ith the vo	plume factorial apply	ctor, C _v , /.	for struc	tural glue	ed lamina	ated timb	per bendi	ng
A	SCE	NOW	/LEDGE RNING													47

Design Properties of Glulam - VERT. & LATERAL

- Bending members are specified w.r.t. maximum allowable bending stress.
- For example, a 24F has allowable bending stress of 2,400 psi., and 26F an allowable bending stress of 2,600 psi.
- Various layups are used. An unbalanced 24F layup using visually graded Douglas-fir lumber is a 24F-V4. The "V" indicates visually graded lumber. A 24F-E4 indicates mechanical graded lumber.

Table 1C Se	ection Propert	ies of Wester	Species Stru	ctural Glued	Laminated Tir	nber (cont.
Depth	Area		X-X Axis		Y-Y	Axis
d (in)	A (in ²)	I _x (in ⁴)	S _x (in ³)	r _x (in)	l _y (in ⁴)	S _y (in ³)
		3-1/2 in. Width	l		$(r_y = 1.$	010 in)
6	21.00	63.00	21.00	1.732	21.44	12.25
7-1/2	26.25	123.0	32.81	2.165	26.80	15.31
9	31.50	212.6	47.25	2.598	32.16	18.38
9-1/4	32.38	230.8	49.91	2.670	33.05	18.89
9-1/2	33.25	250.1	52.65	2.742	33.94	19.40
10-1/2	36.75	337.6	64.31	3.031	37.52	21.44
11-1/4	39.38	415.3	73.83	3.248	40.20	22.97
11-7/8	41.56	488.4	82.26	3.428	42.43	24.24
12	42.00	504.0	84.00	3.464	42.88	24.50
13-1/2	47.25	717.6	106.3	3.897	48.23	27.56
14	49.00	800.3	114.3	4.041	50.02	28.58
15	52.50	984.4	131.3	4.330	53.59	30.63
16	56.00	1195	149.3	4.619	57.17	32.67
16-1/2	57.75	1310	158.8	4.763	58.95	33.69
18	63.00	1701	189.0	5.196	64.31	36.75
19-1.2	68.25	2163	221.8	5.629	69.67	39.81
20	70.00	2333	233.3	5.774	71.46	40.83
21	73.50	2701	257.3	6.062	75.03	42.88
22	77.00	3106	282.3	6.351	78.60	44.92
22-1.2	78.75	3322	295.3	6.495	80.39	45.94
24	84.00	4032	336.0	6.928	85.75	49.00

Glulam Sizes for Western Species and Southern Pine (1d) Shown in Supplement - VERT. & LATERAL

ASCE | KNOWLEDGE & LEARNING

49

5.3.8 Curvature Factor, C_c VERT.

For curved portions of bending members, the reference bending design value shall be multiplied by the following curvature factor:

 $C_c = 1 - (2,000)(t/R)^2$ (5.3-3)

Where:

t = thickness of laminations, in.

R = radius of curvature of inside face of member, in.

 $t/R \le 1/100$ for hardwoods and Southern Pine

 $t/R \le 1/125$ for other softwoods

C_v = Volume Factor - VERT. & LATERAL

$$C_{v} = \left(\frac{21}{L}\right)^{1/x} \left(\frac{12}{d}\right)^{1/x} \left(\frac{5.125}{b}\right)^{1/x} \le 1.0$$
(5.3-1)

Where:

L = length of bending member between points of zero moment, ft

d = depth of bending member, in.

b = width (breadth) of bending member. For multiple piece width layups, b = width of widest piece used in the layup. Thus, $b \le 10.75$ in.

x = 20 for Southern Pine

x = 10 for all other species

51

Table 5A - VERT. & LATERAL

 Table 5A
 Expanded - Reference Design Values for Structural Glued Laminated Softwood Timber Combinations¹

 (Members stressed primarily in bending) (Tabulated design values are for normal load duration and dry service conditions. See NDS 5.3 for a comprehensive description of design value adjustment factors.)

									-								
				Bendi	ng About)	X-X Axis				Bending	About Y-	Axis		Axiall	y Loaded	Fast	teners
			(Lo	aded Pe	rpendicular t of Laminatior	o Wide Faces ns)				(Loaded Pa of I	arallel to Wid Laminations)	e Faces					
		_		Corr	pression	Shear Parallel	Mod	ulus		Compression	Shear Parallel	Mod	iulus	Tension	Compression	Specifi	ic Gravity
		Be	nding	Perp	endicular Grain	to Grain	Flas	f ticity	Bending	Perpendicular to Grain	to Grain	Flag	of sticity	Parallel to Grain	Parallel to Grain	Eastern	for er Desia
				Tension	Compression		For	For				For	For			-	1
		Bottom of Beam	Top of Beam	Face	Face		Deflection	Stability				Deflection	Stability			Top or Bottom	Cide I
		Sitessed in Tension	Stressed in Tension				Calculations	Calculations				Calculations	Calculations			Face	Juer
		Positive Bending)	(Negative Bending)								(2)(2)						
Combination	Species	F _{bx} ⁺	Fbx		CLX	F _{vx} (2)	Ex	E _{x min}	Fby	FcLy	F _{vy} ⁽²⁾⁽³⁾	Ey E	Eymin	Ft	Fc		G
Symbol	Outer/ Core	(psi)	(psi)		(psi)	(psi)	(10 ⁸ psi)	(10 ⁶ psi)	(psi)	(psi)	(psi)	(10 ⁶ psi)	(10 ⁸ psi)	(psi)	(psi)		Ŭ
16F-	1.3E	1600	925		315	195	1.3	0.69	800	315	170	1.1	0.58	675	925	0).41
16F-V3	DF/DF	1600	1250	560	560	265	1.5	0.79	1450	560	230	1.5	0.79	975	1500	0.50	0.5
16F-E2	HE/HE	1600	1050	375	375	215	1.4	0.85	1200	375	190	1.3	0.69	825	1150	0.50	0.5
16F-E3	DF/DF	1600	1200	560	560	265	1.6	0.85	1400	560	230	1.5	0.79	975	1600	0.50	0.5
16F-E6	DF/DF	1600	1600	560	560	265	1.6	0.85	1550	560	230	1.5	0.79	1000	1600	0.50	0.5
16F-E/	HF/HF	1600	1600	3/5	3/5	215	1.4	0.74	1350	3/5	190	1.3	0.74	8/5	1250	0.43	0.4
16F-V2	SP/SP	1600	1400	740	650	300	1.5	0.79	1450	650	260	1.4	0.74	1000	1300	0.55	0.5
10F-V3 16E-V5	SP/SP SP/SP	1600	1400	650	650	300	1.9	0.74	1400	650	260	1.4	0.74	1000	1400	0.55	0.5
16F-E1	SP/SP	1600	1250	650	650	300	1.6	0.85	1400	650	260	1.6	0.85	1050	1550	0.55	0.5
16F-E3	SP/SP	1600	1600	650	650	300	1.7	0.90	1650	650	260	1.6	0.85	1100	1550	0.55	0.55
201-	1.95	2000	1450	850	420	195	1.5	0.79	800	315	220	1.2	0.63	1000	925	0.60	0.60
20F-V7	DF/DF	2000	2000	650	650	285	1.6	0.85	1450	560	230	1.6	0.85	1050	1600	0.50	0.5
20F-V12	AC/AC	2000	1400	560	560	265	1.5	0.79	1250	470	230	1.4	0.74	925	1500	0.46	0.4
20F-V13	AC/AC	2000	2000	560	560	265	1.5	0.79	1250	470	230	1.4	0.74	950	1550	0.46	0.4
20F-V14	POC/POC	2000	2000	560	560	200	1.0	0.79	1300	470	230	14	0.74	900	1600	0.46	0.4
20F-E2	HF/HF	2000	1400	500	500	215	1.6	0.85	1200	375	190	1.4	0.74	925	1350	0.43	0.4
20F-E3	DF/DF	2000	1200	560	560	265	1.7	0.90	1400	560	230	1.6	0.85	1050	1600	0.50	0.5
20F-E6	DF/DF	2000	2000	560	560	265	1.7	0.90	1550	560	230	1.6	0.85	1150	1650	0.50	0.5
20F-E8	ES/ES	2000	1300	450	450	200	1.5	0.79	1000	315	175	14	0.74	825	1100	0.43	0.4
24F-E/SPF1	SPF/SPF	2400	2400	560	560	215	1.6	0.85	1150	470	190	1.6	0.85	1150	2000	0.42	0.4
24F-E/SPF3	SPF/SPF	2400	1550	560	650	215	1.6	0.85	1200	470	195	1.5	0.79	900	1750	0.42	0.4
20F-V2	SP/SP	2000	1550	740	650	300	1.5	0.79	1450	650	260	1.4	0.74	1000	1400	0.55	0.5
20F-V3	SP/SP	2000	1450	650	650	300	1.5	0.79	1600	650	260	1.5	0.79	1000	1400	0.55	0.5
20F-E1	SP/SP	2000	1300	650	650	300	1.7	0.90	1400	650	260	1.6	0.85	1050	1550	0.55	0.5
20F-E3	SP/SP	2000	2000	650	650	300	1.7	0.90	1700	650	260	1.6	0.85	1150	1600	0.55	0.5
24F-	1.7E	2400	1450		500	210	1.7	0.90	1050	315	185	1.3	0.69	775	1000	0).42
24F-V5 24F-V10	DE/HE	2400	2400	650	650	215	1.7	0.90	1350	375	200	1.5	0.79	1100	1450	0.50	0.4
24F-E11	HE/HE	2400	2400	500	500	215	1.8	0.95	1550	375	190	1.5	0.79	1150	1550	0.43	0.4
24F-E15	HE/HE	2400	1600	500	500	215	1.7	0.95	1200	375	190	1.5	0.79	975	1500	0.43	0.4
					050	000	47	0.00	1450	020	260	4.6	0.70	4400	4500	0.55	0.6
24F-V1	SP/SP	2400	1750	740	000	300	1.7	0.90	1400	000	200	1.0	0.79	1100	1500	0.00	0.0
24F-V1 24F-V4 ⁽⁴⁾	SP/SP SP/SP	2400	1750	740	650	210	1.7	0.90	1350	470	230	1.5	0.79	975	1350	0.55	0.0

Table 5A - VERT. & LATERAL

			Bending About X-X Axis									
			(Lo	aded Per	pendicular t	o Wide Faces						
				0	of Lamination	is)						
				Com	pression	Shear Parallel	Mod	lulus				
		Be	nding	Perp	endicular	to Grain		of				
			to Grain				Elas	ticity	Bending			
				Tension	Compression		For	For				
		Bottom of Beem	Top of Beem	Face	Face		Deflection	Stability				
		Stressed in	Stressed in				Calculations	Calculations				
		Tension	Tension									
		(Positive Bending)	(Negative Bending)			(0)						
Combination	Species	F_{bx}^{+}	F _{bx}	F	cLx	F_{vx} ⁽²⁾	Ex	Exmin	Fby			
Symbol	Outer/ Core	(psi)	(psi)		(psi)	(psi)	(10 ⁶ psi)	(10 ⁶ psi)	(psi)			
16F-	1.3E	1600	925		315	195	1.3	0.69	800			
16F-V3	DF/DF	1600	1250	560	560	265	1.5	0.79	1450			
16F-V6	DF/DF	1600	1600	560	560	265	1.6	0.85	1450			
16F-E2	HF/HF	1600	1050	375	375	215	1.4	0.74	1200			
16F-E3	DF/DF	1600	1200	560	560	265	1.6	0.85	1400			
16F-E6	DF/DF	1600	1600	560	560	265	1.6	0.85	1550			
16F-E7	HF/HF	1600	1600	375	375	215	1.4	0.74	1350			
16F-V2	SP/SP	1600	1400	740	650	300	1.5	0.79	1450			
16F-V2 16F-V3	SP/SP SP/SP	1600 1600	1400 1450	740 740	650 740	300 300	1.5 1.4	0.79 0.74	1450 1450			
16F-V2 16F-V3 16F-V5	SP/SP SP/SP SP/SP	1600 1600 1600	1400 1450 1600	740 740 650	650 740 650	300 300 300	1.5 1.4 1.6	0.79 0.74 0.85	1450 1450 1600			
16F-V2 16F-V3 16F-V5 16F-E1	SP/SP SP/SP SP/SP SP/SP	1600 1600 1600 1600	1400 1450 1600 1250	740 740 650 650	650 740 650 650	300 300 300 300	1.5 1.4 1.6 1.6	0.79 0.74 0.85 0.85	1450 1450 1600 1400			
16F-V2 16F-V3 16F-V5 16F-E1 16F-E3	SP/SP SP/SP SP/SP SP/SP SP/SP	1600 1600 1600 1600 1600	1400 1450 1600 1250 1600	740 740 650 650 650	650 740 650 650 650	300 300 300 300 300 300	1.5 1.4 1.6 1.6 1.7	0.79 0.74 0.85 0.85 0.90	1450 1450 1600 1400 1650			
16F-V2 16F-V3 16F-V5 16F-E1 16F-E3 20F-	SP/SP SP/SP SP/SP SP/SP SP/SP 1.5E	1600 1600 1600 1600 1600 2000	1400 1450 1600 1250 1600 1100	740 740 650 650 650	650 740 650 650 650 425	300 300 300 300 300 300 195	1.5 1.4 1.6 1.6 1.7 1.5	0.79 0.74 0.85 0.85 0.90 0.79	1450 1450 1600 1400 1650 800			
16F-V2 16F-V3 16F-V5 16F-E1 16F-E3 20F- V3	SP/SP SP/SP SP/SP SP/SP 1.5E DF/DF	1600 1600 1600 1600 1600 2000 2000	1400 1450 1600 1250 1600 1100 1450	740 740 650 650 650 650	650 740 650 650 650 425 560	300 300 300 300 300 195 265	1.5 1.4 1.6 1.6 1.7 1.5 1.6	0.79 0.74 0.85 0.85 0.90 0.79 0.85	1450 1450 1600 1400 1650 800 1450			
16F-V2 16F-V3 16F-V5 16F-E1 16F-E3 20F- V3 20F-V3 20F-V7	SP/SP SP/SP SP/SP SP/SP 1.5E DF/DF DF/DF	1600 1600 1600 1600 1600 2000 2000 2000	1400 1450 1600 1250 1600 1100 1450 2000	740 740 650 650 650 650 650	650 740 650 650 650 425 560 650	300 300 300 300 300 195 265 265	1.5 1.4 1.6 1.6 1.7 1.5 1.6 1.6	0.79 0.74 0.85 0.85 0.90 0.79 0.85 0.85	1450 1450 1600 1400 1650 800 1450 1450			

ASCE | KNOWLEDGE & LEARNING

53

Table 5B - VERT. & LATERAL

Table 5B Reference Design Values for Structural Glued Laminated Softwood Timber

(Members stressed primarily in axial tension or compression) (Tabulated design values are for normal load duration and dry service conditions. See NDS 5.3 for a comprehensive description of design value adjustment factors.)

Use with Table 5B Adjustment Factors															
				All Load	ling	Ax	ially Load	led		Bending	about Y-Y	Axis	Bending Ab	out X-X Axis	Fasteners
			Mod	lulus					t	Loaded R	Parallel to W	ide	Loaded Perper	dicular to Wide	
				of		Tension	Comp	ression		Faces	of Lamination	15	Faces of L	aminations	
			Elas	ticity		Parallel	Par	allel		Bending		Shear Parallel	Bending	Shear Parallel	
1			For	For		to Grain	to C	Grain				to Grain ⁽¹⁾⁽²⁾⁽³⁾		to Grain ⁽²⁾	1 1
		ļ	Deflection	Stability	Q	A	4 14		4			l I	6 1		C
Combination	Species	Grada	Caroutations	Calculations	Compression	2 or More	4 or More	2 or 3	4 or More	1 ami-	Lami		2 Lam-		Specific Gravity
Symbol	opeues	Grade			to Grain	natione	natione	natione	natione	natione	natione		15 in Deen ⁽⁴⁾		Eastener Design
Oynicor	1	1	F	E	E.	E.	F.	F.	F	E	F	E.	F	E.	G
			(10 ⁶ cm)	(10 ⁶ psi)	(09)	(nsi)	(09)	(insi)	(csi)	(osi)	insi	insii	insi)	່າແ	
Vieually G	adad V	Vactorn	Spaciar	(10 pai)	(pa)	(pai)	(24)	(pai)	((24)	(24)	(24)	(pai)	(pai)	(pa)	<u> </u>
visually C		Vestern		0.79	560	950	1550	1250	1450	1250	1000	220	1250	265	0.60
2		12	1.5	0.79	560	1250	1950	1600	1800	1600	1300	230	1230	265	0.50
3	DF	L2D	1.9	1.00	650	1450	2300	1900	2100	1850	1550	230	2000	265	0.50
4	DF	L1CL	1.9	1.00	590	1400	2100	1950	2200	2000	1650	230	2100	265	0.50
5	DF	L1	2.0	1.06	650	1650	2400	2100	2400	2100	1800	230	2200	265	0.50
14	HF	L3	1.3	0.69	375	800	1100	1050	1200	1050	850	190	1100	215	0.43
15	HF	L2	1.4	0.74	375	1050	1350	1350	1500	1350	1100	190	1450	215	0.43
16	HF	L1	1.6	0.85	375	1200	1500	1500	1750	1550	1300	190	1600	215	0.43
17	HP	LID	1./	0.90	500	1400	1/50	1/50	2000	1850	1550	190	1900	215	0.43
22"	SW AC	1.3	1.0	0.53	315	525	1150	1100	1100	076	5/5	220	1000	195	0.35
70	ÂC	12	13	0.00	470	975	1450	1450	1400	1250	1000	230	1350	265	0.46
71	AC	L1D	1.6	0.85	560	1250	1900	1900	1850	1650	1400	230	1750	265	0.46
72	AC	L1S	1.6	0.85	560	1250	1900	1900	1850	1650	1400	230	1900	265	0.46
73	POC	L3	1.3	0.69	470	775	1500	1200	1200	1050	825	230	1050	265	0.46
74	POC	L2	1.4	0.74	470	1050	1900	1550	1450	1300	1100	230	1400	265	0.46
75	POC	L1D	1.7	0.90	560	1350	2300	2050	1950	1750	1500	230	1850	265	0.46
Visually G	Graded S	Southerr	n Pine												
47	SP	N2M12	1.4	0.74	650	1200	1900	1150	1750	1550	1300	260	1400	300	0.55
47 1:10	SP	N2M10	1.4	0.74	650	1150	1700	1150	1750	1550	1300	260	1400	300	0.55
47 1:8	SP	N2M	1.4	0.74	650	1000	1500	1150	1600	1550	1300	260	1400	300	0.55
48	SP	N2012	1./	0.90	740	1400	2200	1350	2000	1800	1500	260	1600	300	0.55
48 1:10	8P 8P	N2D10	1.7	0.90	740	1300	1750	1350	2000	1800	1500	260	1600	300	0.00
49	SP	N1M16	17	0.90	650	1350	2100	1450	1950	1750	1500	260	1800	300	0.55
49 1:14	SP	N1M14	1.7	0.90	650	1350	2000	1450	1950	1750	1500	260	1800	300	0.55
49 1:12	SP	N1M12	1.7	0.90	650	1300	1900	1450	1950	1750	1500	260	1800	300	0.55
49 1:10	SP	N1M	1.7	0.90	650	1150	1700	1450	1850	1750	1500	260	1800	300	0.55
50	SP	N1D14	1.9	1.00	740	1550	2300	1700	2300	2100	1750	260	2100	300	0.55
50 1:12	SP	N1D12	1.9	1.00	740	1500	2200	1700	2300	2100	1750	260	2100	300	0.55
50 1:10	SP	N1D	1.9	1.00	740	1350	2000	1700	2100	2100	1750	260	2100	300	0.55
 For member 	rs with 2 or	3 laminat	ions, there	ference sh	ear design valu	e for transve	rse loads pa	rallel to the	wide faces (of the lamin	ations, F _{vy} , s	shall be reduced b	y multiplying by:	a factor of 0.84 or	0.95, respectively

I. For members with 2 or 3 laminations, thereforence shear design value for transverse loads parallel to the wide faces of the laminations, E₁₀, shall be reduced by multiplying by a factor of 0.84 or 0.95, respectively.
 The reference shear design values for transverse loads applied parallel to the wide faces of the laminations, E₁₀, shall be reduced by multiplying by a factor of 0.84 or 0.95, respectively.
 The reference shear design values for transverse loads applied parallel to the wide faces of the laminations, E₁₀, shall be reduced by multiplying by a factor of 0.84 or 0.95, respectively.
 So of the remembers manufact with the adjustments in for contoose 1 and 3.
 The reference design values for thear, F₁₀, shall be multiplied by 0.5 for all other members manufactured from multiple pice laminations with a abcoded edge joints. This request the adjustments in for contoose 1 and 3.
 The reference design values for thear, F₁₀, shall be multiplied by the share reduced by multiplying by factors of 0.88.
 When Western Codens, Western Codens, Western Woods, and Redwood (open grain) are used in combinations for Softwood Species (SW), the reference design value for modulus of elasticity, E, shall be reduced by 10 pis, before applying any other adjustments.
 The reference design values for shear of system 0.97, when Cost Situs ad Spruce, Cost Spruce, Western White Pine, and Bastern White Pine are used in combinations for Softwood Species (SW) meremeted by 2.800 pine. Them Cost Situs Aspruce, Cost Spruce, Sust Spruce, Cost Spruce, Sust Spruce, Cost Spruce, Western White Pine, and Eastern White Pine are used in combinations for Softwood Species (SW) meremeted by 2.800 pine. Them Cost Situs Aspruce, Cost Spruce, Cos

Table 5B

Table 5B Reference Design Values for Structural Glu

(Members stressed primarily in axial tension or compression) (Ta NDS 5.3 for a comprehensive description of design value adjustment fa

						Use w	ith Tab	le 5B A	dj
				All Load	ing	Ax	ially Load	led	
			Mod	lulus					
			(of		Tension	Compr	ession	
			Elas	ticity		Parallel	Par	allel	
			For	For		to Grain	to C	Grain	
			Deflection	Stability					
	1		Calculations	Calculations	Compression	2 or More	4 or More	2 or 3	4
Combination	Species	Grade			Perpendicular	Lami-	Lami-	Lami-	
Symbol					to Grain	nations	nations	nations	
-			E	Emin	For	Ft	F。	F。	
			(10 ⁶ psi)	(10 ⁶ psi)	(psi)	(psi)	(psi)	(psi)	
Visually G	aded V	Vestern	Species	5					
1	DF	L3	1.5	0.79	560	950	1550	1250	
2	DF	L2	1.6	0.85	560	1250	1950	1600	
3	DF	L2D	1.9	1.00	650	1450	2300	1900	
4	DF	L1CL	1.9	1.00	590	1400	2100	1950	
5	DF	L1	2.0	1.06	650	1650	2400	2100	
14	HF	L3	1.3	0.69	375	800	1100	1050	
15	HF	L2	1.4	0.74	375	1050	1350	1350	
16	HF	L1	1.6	0.85	375	1200	1500	1500	
17	HF	L1D	1.7	0.90	500	1400	1750	1750	
22 ⁽⁵⁾	SW	L3	1.0	0.53	315	525	850	725	
69	AC	L3	1.2	0.63	470	725	1150	1100	
70	AC	L2	1.3	0.69	470	975	1450	1450	
71	AC	L1D	1.6	0.85	560	1250	1900	1900	
72	AC	L1S	1.6	0.85	560	1250	1900	1900	
73	POC	L3	1.3	0.69	470	775	1500	1200	
74	POC	L2	1.4	0.74	470	1050	1900	1550	
75	POC	L1D	1.7	0.90	560	1350	2300	2050	

Glulams - VERT. & LATERAL

- Table 5C is for hardwood glulams loaded primarily in bending
- Table 5D is for hardwood glulams loaded primarily in axial tension or compression

Wood Design Example 2 – Previous Prelim. Design VERT.

Design Load = 40 live load psf and 20 psf dead (not including girder wts.)

ASCE | KNOWLEDGE & LEARNING

57

Example Exterior Glulam Girder - VERT.

Use trib. width and uniform load analysis

Live load = $40 \times 10 = 400$ lb/ft

Dead load = $20 \times 10 = 200$ lb/ft

Max moment = $600 (40)^2 / 8 = 120,000 \text{ lb} \cdot \text{ft}$

Now either guess at size of girder or wood species and grade

Try a 6.75 x 39 glulam $S = 1,711 \text{ in}^3$

 $A = 263.3 \text{ in}^2 \text{ weight} \sim 65 \text{ lb/ft}$

Example Exterior Glulam Girder - VERT.

 $F_{b'ASD req} = M/S = (133,000/1,711 \text{ in}^3)12 = 932 \text{ psi}$

 $F'_{bASD} = C_D C_M C_t C_L (\text{or } C_V) C_{fu} C_C C_I F_b$

Dry service, normal temps, no curvature not on flat

 $C_I = C_{fu} = C_t = C_M = C_C = 1.0$

Unbraced length Table 3.3.3

Simple span beam $-L_e = 1.54 \times (L_u = 10') = 15.4 -$

concentrated loads and bracing at $\frac{1}{4}$ points or = 2.06 L_u

 $L_e = 10(2.06) = 20.6$ for uniform loads braces at supports

Use $L_e = 20.6$ – check slenderness ratio = $R_B = [L_e d/b^2]^{1/2}$

 $R_B = [20.6(12)39/6.75^2]^{1/2} = 14.55 < 50$ (limit)

ASCE | KNOWLEDGE & LEARNING

59

Example Exterior Glulam Beam VERT.

$$\begin{split} F_{bE} &= 1.2E'_{min}/R_B^2 \\ \text{Guess } 16F - 1.3E(16F - V6) - \text{from Table 5A } E_{min} = 850,000 \\ F_{bx} &= 1,600 \text{ so } F_b^* = 1,600 \text{ psi} \\ F_{bE} &= 1.2 (850,000)/(14.55)^2 = 4,818 \text{ psi} \\ C_L &= (1 + F_{bE}/F_b^*)/1.9 - \left[[(1 + F_{bE}/F_b^*)/1.9]^2 - (F_{bE}/F_b^*)/0.95 \right]^{1/2} \\ &= 0.977 \\ \text{Check } C_v &= (21/L)^{1/x} (12/d)^{1/x} (5.125/b)^{1/x} < 1.0 \\ X &= 10 \text{ for all but southern pine} \\ \text{L in feet and d and b in inches} \\ C_v &= (21/40)^{1/10} (12/39)^{1/10} (5.125/6.75)^{1/10} = 0.811 < C_L \text{ Gov.} \end{split}$$

Table 5A -	VERT.	& LA	TERAL
------------	-------	------	-------

				Bendi	ng About)	(-X Axis			
			(Lo	aded Pe	rpendicular te	o Wide Faces			
				(of Lamination	ns)			
				Com	pression	Shear Parallel	Mod	lulus	
		Be	nding	Perp	endicular	to Grain		of	
				to	Grain		Elas	ticity	Bending
				Tension	Compression		For	For	
		Bottom of Beem	Top of Beem	Face	Face		Deflection	Stability	
		Stressed in	Stressed in				Calculations	Calculations	
		Tension	Tension						
		(Positive Bending)	(Negative Bending)						
Combination	Species	F _{bx} ⁺	F _{bx}	1	Fclax	$F_{vx}^{(2)}$	Ex	Exmin	F _{by}
Symbol	Outer/ Core	(psi)	(psi)		(psi)	(psi)	(10 ⁶ psi)	(10 ⁶ psi)	(psi)
16F-	1.3E	1600	925		315	195	1.3	0.69	800
16F-V3	DF/DF	1600	1250	560	560	265	1.5	0.79	1450
16F-V6	DF/DF	1600	1600	560	560	265	1.6	0.85	1450
16F-E2	HF/HF	1600	1050	375	375	215	1.4	0.74	1200
16F-E3	DF/DF	1600	1200	560	560	265	1.6	0.85	1400
16F-E6	DF/DF	1600	1600	560	560	265	1.6	0.85	1550
16F-E7	HF/HF	1600	1600	375	375	215	1.4	0.74	1350
16F-V2	SP/SP	1600	1400	740	650	300	1.5	0.79	1450
16F-V3	SP/SP	1600	1450	740	740	300	1.4	0.74	1450
16F-V5	SP/SP	1600	1600	650	650	300	1.6	0.85	1600
		1000	1050	650	650	300	16	0.85	1400
16F-E1	SP/SP	1600	1250	050	000	000	1.0	0.00	1400
16F-E1 16F-E3	SP/SP SP/SP	1600	1250	650	650	300	1.0	0.90	1650
16F-E1 16F-E3 20F-	SP/SP SP/SP 1.5E	1600 1600 2000	1250 1600 1100	650	650 425	300 195	1.7	0.90	1650 800
16F-E1 16F-E3 20F- 20F-V3	SP/SP SP/SP 1.5E DF/DF	1600 1600 2000 2000	1250 1600 1100 1450	650 650	650 425 560	300 195 265	1.7 1.5 1.6	0.85 0.90 0.79 0.85	1650 800 1450
16F-E1 16F-E3 20F-V3 20F-V7	SP/SP SP/SP 1.5E DF/DF DF/DF	1600 1600 2000 2000 2000	1250 1600 1100 1450 2000	650 650 650	650 425 560 650	300 195 265 265	1.6 1.6 1.6	0.85 0.90 0.79 0.85 0.85	1650 800 1450 1450

ASCE | KNOWLEDGE & LEARNING

61

Example Glulam Girder VERT.

 $F'_{bASD} = 0.811 \times 1,600 = 1,297 > 932$ psi

OK in bending

Check shear

 $f_{vmax} = 1.5(V/A) = (1.5)(665(40)/2)/263.3 = 75.8$ psi

 F'_{vASD} = only C_D , C_M and C_t = 1.0 all

$$16F - 1.3E(16FV6), F'_{\nu} = 265(1 \times 1 \times 1) = 265 \text{ psi} > 75.8$$

OK in shear

Example Glulam Girder VERT. & LATERAL Check deflections – only short term $I = 33,370 \text{ in}^4$ (Table 1C) $\Delta_{max} = 5(400)(40)^4(12)^3/[384(1,600,000)33,370] = 0.43 \text{ in}.$ = L/1,112 OK for L/360

Use 6.75 x 39" 16F-1.3 E (16FV6) glulam

ASCE | KNOWLEDGE & LEARNING

What would change in the girder design if the deck was assumed to fully brace the girder? VERT. Possible Answers

- A. The C_L factor would change and the girder capacity would increase.
- B. The C_L factor would change and the girder capacity would decrease.
- c. The C_V factor would change and the girder capacity would decrease.
- D. The C_L factor would change and the girder capacity would not change.

Possible Breadth Exam Problems - VERT.

- a) Given a loading and span, select grade of lumber of a given size (or given grade, select size) to resist load.
 Beam Ex 1 or 2, just use size given.
- b) Given a beam, what is the maximum load that can be applied – smaller of that given by moment, shear or deflection check. Beam Ex 1 or 2, just use size given and check flexure, etc.
- c) Given a beam, find max. moment capacity or shear capacity, etc. Beam Ex 1 or 2, just use size given and check flexure, etc.

ASCE | KNOWLEDGE & LEARNING

65

Compression Loading VERT. & LATERAL

- Compression parallel to grain usually columns
- Compression perpendicular to the grain usually bearing

Compression Parallel to Grain - VERT. & LATERAL

- $\bullet f_c = P_{cap}/A_n \le F'_{cASD}$
- $\blacksquare F'_{cASD} = F_c \times C_D \times C_m \times C_t \times C_p \times^*$
- C_D , C_M , C_t as with bending
- * C_i, and C_F are also applied for sawn timber as with bending

ASCE | KNOWLEDGE & LEARNING

Compression Parallel to Grain - VERT. & LATERAL

Code classifies three column types – solid, spaced or built-up

Compression Parallel to Grain - VERT. & LATERAL

$$C_{p} = \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{(F_{cE}/F_{c}^{*})}{c}}$$

 F_c^* = adjusted allowable except C_p

 $F_{cE} = \frac{0.822E'_{min}}{(l_e/d)^2}$ c = 0.8 sawn timber, 0.9 for glulams

Largest l_e/d governs and must not exceed 50, $l_e = K_e l$

App G suggests

$$K_{e_{pin_pin}} = 1.0$$
 and $K_{e_{fixed_fixed}} = 0.65$

ASCE | KNOWLEDGE & LEARNING

69

Spaced Columns - VERT. & LATERAL

inches. $\ell_3=$ Distance from center of spacer block to centroid of the group of split ring or shear plate connectors in end blocks, inches. d_1 and $d_2=$ cross-sectional dimensions of individual rectangular compression members in planes of lateral support, inches. Condition "b": $\ell_1/20<$ end distance $\leq \ell_1/10$

$$F_{CE} = \frac{0.822K_x E'_{min}}{(l_e/d)^2}$$

c = 0.8 sawn timber, 0.9 for glulams

Largest I/d governs and must not exceed 50 or 40 (see Section 15.2)

 $k_x = 2.5$ for condition a and 3.0 for condition b

$$l_e = Kl$$

Note that split ring systems must provide capacity as defined in 15.2

Built-up Columns - VERT. & LATERAL

Figure 15B Mechanically Laminated Built-Up Columns

$$C_p = K_f \left(\frac{1 + (F_{cE}/F_c^*)}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_c^*)}{2c}\right]^2 - \frac{(F_{cE}/F_c^*)}{c}} \right)$$

$$F_{cE} = \frac{0.822E'_{min}}{(l_e/d)^2}$$

 $K_f = 0.6$ for built-up columns where ℓ_{e2}/d_2 is used to calculate F_{cE} and the built-up columns are nailed in accordance with 15.3.3

 $K_f = 0.75$ for built-up columns where ℓ_{e2}/d_2 is used to calculate F_{cE} and the built-up columns are bolted in accordance with 15.3.4

 $K_f = 1.0$ for built-up columns where ℓ_{e1}/d_1 is used to calculate F_{cE} and the built-up columns are either nailed or bolted in accordance with 15.3.3 or 15.3.4, respectively

c = 0.8 for sawn lumber

c = 0.9 for structural glued laminated timber or structural composite timber

71

Example Sawn Timber Column - VERT. Assume Column as Shown – Pin–Pin supports P = 5,760 lb dead + 24,000 lb live = 29,760 lb Dry service, normal temps, no incising $C_m = C_t = C_D = 1.0 - \text{guess } C_p = 0.8$ Guess larger than 2-4" use Table 4D post and timber SPF#1 $F_c = 700 \text{ psi} = F_c^*$ since factors except C_p are = 1.0 (including C_F) Then area required = 29,760/700 × 0.8 = 53.1 in² Try an 8 x 8 in – area = $(7.5)^2 = 56.25 \text{ in}^2$

Example Sawn Timber Column - VERT.

Та	b	е	41
----	---	---	----

4D Reference Design Values for Visually Graded Timbers (5" x 5" and larger)^{1,3}

(Cont.) (Tabulated design values are for normal load duration and dry service conditions, unless specified otherwise. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

		USE W	/ITH TAB	LE 4D AI	DJUSTMENT	FACTORS				
				Design va	alues in pounds p	er square inch (p	osi)]	
Species and commercial Grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		Fb	Ft	Fv	Fc⊥	Fc	E	Emin	G	
SPRUCE-PINE-FIR										
Select Structural No.1 No.2	Beams and Stringers	1,100 900 600	650 450 300	125 125 125	425 425 425	775 625 425	1,300,000 1,300,000 1,000,000	470,000 470,000 370,000		
Select Structural No.1 No.2	Posts and Timbers	1,050 850 500	700 550 325	125 125 125	425 425 425	800 700 500	1,300,000 1,300,000 1,000,000	470,000 470,000 370,000	0.42	NLGA
SPRUCE-PINE-FIR (SOUTH)										
Select Structural No.1 No.2	Beams and Stringers	1,050 900 575	625 450 300	125 125 125	335 335 335	675 550 375	1,200,000 1,200,000 1,000,000	440,000 440,000 370,000	0.26	NELMA NSLB
Select Structural No.1 No.2	Posts and Timbers	1,000 800 475	675 550 325	125 125 125	335 335 335	700 625 425	1,200,000 1,200,000 1,000,000	440,000 440,000 370,000	0.30	WWPA WCLIB
WESTERN CEDARS										
Select Structural No.1	Beams and Stringers	1,150 975	675 475	140 140	425 425	875 725	1,000,000 1,000,000	370,000 370,000		

ASCE | KNOWLEDGE & LEARNING

73

Example Sawn Timber Column VERT.

 $F_{cE} = 0.822 (E_{min}) / (L_e/d)^2 = 0.822 (470,000) / (9 \times 12/7.5)^2 = 1,863$ psi

$$C_p = \left(1 + (F_{cE}/F_c^*)\right)/2c - \left[\left[\left(1 + (F_{cE}/F_c^*)\right)/2c\right]^2 - (F_{cE}/F_c^*)/c\right]^{1/2}\right]^{1/2}$$

= 0.906 (note c = 0.8 for sawn timber and $C_F = 1$)

 $F_c' = 700 \times 1 \times 1 \times 1 \times 0.906 = 634$ psi

 $f_c = 29,760/56.25 = 529 \text{ psi} < 634 \text{ OK}$

Use a 8x8 SPF #1 Post

Example Built-up Sawn Timber Column VERT.

Similar to previous example – pinned-pinned supports. Find capacity of the column.

Assume (5) 2 x 6, SPF #2 Built-up Column

Dry service, normal temps, no incising

 $C_m = C_t = C_D = 1.0$

Use Table 4A, $C_F = 1.1$, & (SPF #1&2) $F_c = 1,150$ psi

Assume nailed to meet 15.3.3. $K_{f2} = 0.6$ for buckling about nailed axis and $K_{f1} = 1.0$ for buckling about solid axis

Area = $5 \times 1.5 \times 5.5 = 7.5 \times 5.5 = 41.25$ in²

9 ft

75

ASCE | KNOWLEDGE & LEARNING

$$\begin{split} F_{cE1} &= 0.822 (E_{min}) / (L_{e1}/d_1)^2 = 0.822 \ (510,000) / (9 \times 12/5.5)^2 = 1,087 \ \text{psi} \\ F_{cE2} &= 0.822 (E_{min}) / (L_{e2}/d_2)^2 = 0.822 \ (510,000) / (9 \times 12/7.5)^2 = 2,022 \ \text{psi} \\ F_c^* &= 1.1 \times 1,150 = 1,265 \ \text{psi} \end{split}$$

$$C_{p1} = K_{f1} \left(1 + (F_{cE1}/F_c^*) \right) / 2c - \left[\left[\left(1 + (F_{cE1}/F_c^*) \right) / 2c \right]^2 - (F_{cE1}/F_c^*) / c \right]^{1/2} \right]$$

= 0.636 for $K_{f1} = 1.0$

$$C_{p} = K_{f2} \left(1 + (F_{cE2}/F_{c}^{*})) / 2c - \left[\left[\left(1 + (F_{cE2}/F_{c}^{*})) / 2c \right]^{2} - (F_{cE2}/F_{c}^{*}) / c \right]^{1/2} \right]^{1/2} \right]^{1/2}$$

= 0.495 for $K_{f2} = 0.6$ governs

(note c = 0.8 for sawn timber)

 $F_c' = 1,265 \times 0.495 = 626$ psi

Capacity = $41.25 \times 626 = 25,830$ lb

Possible Breadth Exam Problems - VERT.

- a) Given a loading and height, select grade of lumber of a given size (or given grade, select size) to resist load. Column Ex 1 or 2, just use size given.
- b) Given a column, what is the maximum load that can be applied.
 Column Ex 1 or 2, just use size given and back calculate load from stress.
- c) Truss compression members design as a column after load is determined. Usually pin-pin supports.

ASCE | KNOWLEDGE & LEARNING

Combined Axial Load and Bending - VERT. & LATERAL

Members subjected to a combination of bending and axial tension (see Figure 3G) shall be so proportioned that:

$$\frac{f_t}{F_t'} + \frac{f_b}{F_b^*} \le 1.0$$

and

$$\frac{f_b - f_t}{F_b^{**}} \le 1.0$$

(3.9-2)

(3.9-1)

Where

 F_b^* = reference bending design value multiplied by all applicable adjustment factors except C_L

 F_b^{**} = reference bending design value multiplied by all applicable adjustment factors except C_v

For truss tension members, no bending,

just limit $f_t = T/A_n \le F'_t$

77

Combined Axial Load and Bending - VERT. & LATERAL

3.9.2 Bending and Axial Compression

Members subjected to a combination of bending about one or both principal axes and axial compression (see Figure 3H) shall be so proportioned that:

$$\left[\frac{f_c}{F'_c}\right]^2 + \frac{f_{b1}}{F'_{b1}[1 - (f_c/F_{cE1})]} + \frac{f_{b2}}{F'_{b2}[1 - (f_c/F_{cE2}) - (f_{b1}/F_{bE})^2]} \le 1.0$$
(3.9-3)

Ch. 15.4 NDS – Columns with eccentric axial loads and/or side loads, slightly different formula

ASCE | KNOWLEDGE & LEARNING

79

Diaphragms & Load Distribution - LATERAL

- Design sheathing and framing to take shear and
- End/edge elements to take cord forces (columns - tension members)
- Chord force = M/d
- Design chord elements for extra axial force – beam column. Be careful with bearing on plates at base of shear walls and anchors.
- d distance between centerline of chords

Wood diaphragms are almost always flexible –

Lat. Load distribution w.r.t. trib. width

Shear Walls and Diaphragms - LATERAL

Table 4.2.4 Maximum Diaphragm A (Horizontal or Sloped Diaphr	spect Ratios agms)
Diaphragm Sheathing Type	Maximum L/W Ratio
Wood structural panel, unblocked	3:1
Wood structural panel, blocked	4:1
Single-layer straight lumber sheathing	2:1
Single-layer diagonal lumber sheathing	3:1
Double-layer diagonal lumber sheathing	4:1

ASCE | KNOWLEDGE & LEARNING

- Get shear per unit length = shear/net length of shear wall or depth of diaphragm from:
- AWC SDPW&S I will use this since it is specifically referenced by the NCEES Materials.
- IBC Section 2305 can also be used.
- Aspect ratios of diaphragm limited to 3:1 (no blocking) or 4:1 in NDS SDPW&S for structural panels

81

Shear Walls and Diaphragms - LATERAL

НD	HD		HD	HD	нр	нр

Table 4.3.4 Maximum Shear Wall A	spect Ratios
Shear Wall Sheathing Type	Maximum <i>h/b_s</i> Ratio
Wood structural panels, unblocked	2:1
Wood structural panels, blocked	3.5:1
Particleboard, blocked	2:1
Diagonal sheathing, conventional	2:1
Gypsum wallboard	2:1 ¹
Portland cement plaster	2:1 ¹
Structural Fiberboard	3.5:1
 Walls having aspect ratios exceeding 1 blocked shear walls. 	.5:1 shall be

For segmented shear walls, three methods of design are used –

The simplest is to design full height segments to have a sum of resistances that is greater that the total diaphragm reaction. OK as long as same materials.

Must have chord elements at edge of each segment.

Segments must meet SDPWS Section 4.3.4 aspect ratios & shear walls 3.5:1 to 1.5:1

Use the AWC-SDPWS 2015 Standard LATERAL

Diaphragm Capacities - LATERAL

Table 4.2A Nominal Unit Shear Capacities for Wood-Frame Diaphragms

					DIOCK	eu w	000 3	struc	turai	rane	i Diap	nragin	5							
											Α								в	
											EISMIC							W	IND	
					Nail	Spacing	g (in.) at	diaphra (Cas	gm boun es 3 & 4)	daries (a , and at a	ill cases), a all panel ed	at continue Iges (Case	us panel s 5 & 6)	edges pa	rallel to	o load	Nail boundar panel ed 4), and a	Spacing (in ies (all ca ges paralle all panel	n.) at diaph ses), at cor el to load (0 edges (Cas	nragm ntinuous Cases 3 & ses 5 & 6)
1		A Real and an and a second		Minimum		6			4			2-1/2			2		6	4	2-1/2	2
		Fastener Penetration in	Minimum	Nominal Width of Nailed Face				Nail Spa	cing (in.)	at other	panel edg	es (Cases	1, 2, 3, &	4)			Nail Spa	cing (in.) a (Cases 1	t other par , 2, 3, & 4)	nel edges
Sheathing	Common	Framing	Panel	at Adjoining		6			6			4			3		6	6	4	3
Grade	Nail Size	Member or	Thickness	Panel Edges	Vs (all)	0.10	G _a	Vs (=10)	0	G _a	Vs (=10)	G		Vs (=10)	0.1	G,	Vw (=10	Vw (=10)	V _w	V.,
		(in)	(in.)	Boundaries	(pii)	(kip	5/11.7	(pii)	(kip:	5/111.]	(pii)	(kip:	ant.j	(pii)	(MP	/s/m.j	(pii)	(pii)	(pii)	(pii)
		(m.)		(in.)		OSB	PLY		OSB	PLY		OSB	PLY		OSB	PLY				
	6d	1-1/4	5/16	2	370	15	12	500	8.5	7.5	750	12	10	840	20	15	520	700	1050	1175
				3	420	12	9.5	560	7.0	8.0	840	9.5	8.5	950	-1/	13	590	785	11/5	1330
Structural I	8d	1-3/8	3/8	3	600	14	10	800	9.0	6.5	1000	13	9.0	1200	18	15	840	1010	1485	1890
	404	1.10	45/00	2	640	24	17	850	15	12	1280	20	15	1460	31	21	895	1190	1790	2045
	100	1-1/2	10/32	3	720	20	15	960	12	9.5	1440	16	13	1640	26	18	1010	1345	2015	2295
			5/16	2	340	15	10	450	9.0	7.0	670	13	9.5	760	21	13	475	630	940	1065
	6d	1-1/4		3	380	12	9.0	500	7.0	6.0	760	10	8.0	860	17	12	530	700	1065	1205
			3/8	2	370	13	9.5 8.0	500	7.0	6.0 5.0	750	10 8.5	8.0	950	18	12	520	700	1050	1175
			2/0	2	480	15	11	640	9.5	7.5	960	13	9.5	1090	21	13	670	895	1345	1525
C			3/6	3	540	12	9.5	720	7.5	6.0	1080	11	8.5	1220	18	12	755	1010	1510	1710
and	84	1-3/8	7/16	2	510	14	10	680	8.5	7.0	1010	12	9.5	1150	20	13	715	950	1415	1610
Single-Floor				3	570	11	9.0	760	7.0	6.0	1140	10	8.0	1290	17	12	800	1065	1595	1805
			15/32	2	540	13	9.5	720	7.5	6.5	1060	11	8.5	1200	19	13	755	1010	1485	1680
				3	600	10	8.5	800	6.0	5.5	1200	9.0	7.5	1350	15	11	840	1120	1680	1890
			15/32	2	580	25	15	//0	15	11	1150	21	14	1310	33	18	810	1080	1610	1835
	10d	1-1/2		3	840	21	14	860	12	9.5	1300	10	12	14/0	28	10	910	1205	1820	2000
			19/32	3	720	17	12	960	10	8.0	1440	14	11	1640	24	15	1010	1345	2015	2295
	1. Nomir ASD a constru- structu 2. For sp	al unit shear capac llowable unit shea uction requiremen ural panel diaphra ecies and grades o d nominal unit	cities shall be ar capacity a ts see 4.2.6. gms. See Ap of framing of	e adjusted in accord nd LRFD factored For specific require pendix A for comm ther than Douglas-l	ance with unit resist ments, see non nail d Fir-Larch	4.2.3 to d ance. For e 4.2.7.1 imension or South	etermine r general for wood s. em Pine,			Γ	one Panel Di	rection	Cases 1 Panel J to Fran	1&3:Contin oints Perper ting	uous idicular	Cases 2& Panel Join Framing	4: Continuous ts Parallel to	Cases 5 Panel Jo dicular a Framing	&6: Continue ints Perpen- ind Parallel 1	ous io
	tabula	ted nominal unit s	hear capacit	why the Specific G	rauity Ad	instment	Factor =			P	erpendicular	to Supports		Last Tal	-ting	Last	- Hoding		ad Bodin	0

- ne of fabrication and r OSB or 3-ply plywoo wused, G, val
- of the framing is greater than 19% at time of fabricatio plied by 0.5. pends on the direction of continuous panel joints with respe and direction of framing members, and is independent

Panel span rating for out-of-plane load (See Section 3.2.2 and Section 3.2.3)

Diaphragm Capacities - LATERAL

able 4.2C No	minal Un	it Shear C	apacitie	es for Woo	d-Fra	me D	iaph	ragm	\$				
		U	nblocked	Wood Struc	tural P	anel C	Diaphra	agms ^{1;}	2,3,4				
								А					в
							SE	EISMIC				w	IND
		Minimum	Minimum	Minimum Nominal Width	6 ir	ı. NailS∣ ar	pacing a d suppo	t diaphra rting me	gm bour mbers	daries	6 dia and	in. Nail phragm support	Spacing at boundaries ting members
Sheathing Grade	Common Nail Size	Fastener Penetration in Framing	Nominal Panel Thickness	of Nailed Face at Supported Edges and		Case 1		c	ases 2,3,	4,5,6	c	ase 1	Cases 2,3,4,5,6
		(in.)	(in.)	(in.)	Vs (plf)	(kip	3" s <i>l</i> in.)	Vs (plf)	(kip	G _a is/in.)		v _w plf)	v _w (plf)
						OSB	PLY		OSB	PLY			
	6d	1-1/4	5/16	2 3	330 370	9.0 7.0	7.0 6.0	250 280	6.0 4.5	4.5 4.0		460 520	350 390
Structural I	8d	1-3/8	3/8	2 .	480 530	8.5 7.5	7.0 6.0	360 400	6.0 5.0	4.5 4.0		670 740	505 560
	104	1.1/2	15/32	2	570	14	10	430	9.5	7.0		800	600
	100	1-1/2	10/02	3	640	12	9.0	480	8.0	6.0		895	670
			5/16	2	300	9.0	6.5	220	6.0	4.0		420	310
	6d	1-1/4		3	340	7.0	5.5	250	5.0	3.5		475	350
		1	3/8	2	330	7.5	5.5	250	5.0	4.0		460	350
				3	370	6.0	4.5	280	4.0	3.0		520	390
			3/8	2	430	9.0	6.5	320	6.0	4.5		500	450
				3	480	7.5	5.5	360	5.0	3.5		670	505
Sheathing and	8d	1-3/8	7/16	2	460	8.5	6.0	340	5.5	4.0		845	475
Single-Hoor				3	510	7.0	5.5	380	4.5	3.5		715	530
		1	15/32	2	480	7.5	5.5	360	5.0	4.0		670	505
				3	530	6.5	5.0	400	4.0	3.5		740	560
		1	15/32	2	510	15	9.0	380	10	6.0		715	530
	10d	1-1/2		3	580	12	8.0	430	8.0	5.5		810	600
			19/32	2 3	570 640	13 10	8.5 7.5	430 480	8.5 7.0	5.5 5.0		800 895	600 670

Also have tables of high load diaphragms and lumber diaphragms

Allowable values = nominal resistance/2

ASCE | KNOWLEDGE & LEARNING

85

Simple Diaphragm Example LATERAL

Simple Diaphragm Example LATERAL

Determine the shear flow, q

Critical diaphragm shear = (135 + 45) lb/ft x (5)(16') x 1/2 = 7,200 lb

 $0.6W = 7,200 \times 0.6 = 4,320$ lb

$$q = \frac{4,320}{4x12} = 90$$
 lb/ft

Use Table 42C Unblocked – Assume Case 1 (But any will work)

Unblocked – 2 inch members, 6d nails @ 6 inch OC, single floor sheathing .

 $q_{allow} = \frac{1}{2} \times 420 = 210 \text{ lb/ft} > 90 \text{ lb/ft}$ Therefore OK

Note for all other cases , $q_{allow} = \frac{1}{2} \times 310 = 155 \text{ lb/ft} > 90 \text{ lb/ft}$

ASCE | KNOWLEDGE & LEARNING

87

Diaphragm Capacities - LATERAL

Allowable values = nominal resistance/2

		υ	nblocked	Wood Struct	ural P	anel C	Diaphra	agms	1,2,3,4			
								А				в
				Misiour	61	n. Nail S	SE pacing a	ISMIC	ragm bour	idaries	6 in. Nail diaphragm	IND Spaci
Sheathing Grade	Common Nail Size	Minimum Fastener Penetration in Framing	Minimum Nominal Panel Thickness	Nominal Width of Nailed Face at Supported Edges and		Case 1		rting m	cases 2,3,	4,5,6	Case 1	ting m C 2,
		(in.)	(in.)	Boundaries (in.)	vs (plf)	((kip	3ª s <i>l</i> in.)	vs (plf)	(kip	G _a)s/in.)	v _w (plf)	
	6d	1-1/4	5/16	2	330	9.0 9.0	PLY 7.0	250	6.0	PLY 4.5	460	
Structural I	8d	1-3/8	3/8	2	370 480 520	7.0 8.5 7.5	6.0 7.0	280 360	4.5 6.0	4.0	520 670 740	
	10d	1-1/2	15/32	2	570	14	10	430	9.5	7.0	800	
			5/16	2	300	9.0	6.5	220	6.0	4.0	420	
	6d	1-1/4	3/8	2	330	7.5	5.5	250	5.0	4.0	460	
	8d	1-3/8	3/8	2	430	9.0	6.5	320	6.0	4.5	600	
Sheathing and Single-Floor			7/16	2	460	8.5	6.0 6.6	340	5.5	4.0	645	
		1	15/32	2	480	7.5	5.5	360	5.0	4.0	670	
			15/32	2	530	15	9.0	380	4.0	3.5 6.0	740	
	10d	1-1/2	. 19/32			Cases 1 Panel Jo to Fram	&3:Continuints Perpering	uous idicular	Cases 2&4: Panel Joints Framing	Continuous Parallel to	Cases 5&6: Contin Panel Joints Perper dicular and Paralle Framine	nuous n- I to
				Long Panel Direct Perpendicular to 5	tion Supports	Cons S		ning ding powl joint headay	P and D	Avering Buding Contractors part (pith	Create S	ning oding upped joins
E				Long Panel Direct Parallel to Suppor	tion ts ^a	Cose 1 Link Link Link	Continues	ning ding povel juints		Frening Boding Carthouse parel juints	Supervised States	oning ooding a paraliphis

Shear Walls – Also Have Tables for Gyp. Board LATERAL

A BI- Stelling Sheathing Material Mate						Wo	od-ba	nsed l	Pane	ls ⁴										
Minimum Pastener Minimum Pastener Minimum Matrixial Matri Matrixial Matrixial Matrixial Matrixial Matrixia Matrixial Matr																				,
Minimum Partel (h.) Fastener Type & Size (h.) Fastener Type & Size (h.) Partel Edge Fast==training (h.) Partel M.	[Minimun	t						SEI	A SMIC							wi	B ND	
Material Materia	Sheathing	Minimum Nominal	Fastener Penetration	Fastener	ſ			Pa	nel Edg	ge Faste	ener Sp	acing (in.)				Par	ieł Edg Spacir	e Faste 1g (in.)	ner
Minical of the set ing and the set ing	Material	Panel	in Framing	Type & Size		6			4			3			2		6	4	3	2
(in.) (in.) (ip)1 (kipsin.) (p)1	ļ	(in.)	Blocking	ļ	V ₅	0	3.	Vs	(3.	Vs	0	3.	Vs	0	3.	V _w	Vw	Vw	Vw
Mail (common or garantice how) Shouthraft Mail (common or garantice how) (advantate ho		()	(in.)	((plf)	(kíps	s/ín.)	(plf)	(kíp	s/in.)	(plf)	(kíp:	s/ín.)	(plf)	(kip	s/in.)	(plf)	(plf)	(plf)	(plf)
VPCOC Structural Structural Structural Panels. 5/16 Structural Structure Structural Structural Structural Structural Structural Structur		{		Nail (common or galvanized box)	{	OSB	PLY	{	OSB	PLY	{	OSB	PLY	{	OSB	PLY				
Panels- Structural 1*3 38° (716 ⁻) - 1-38 460 bd 19 14 bd 720 bd 24 bd 170 bd 120 bd 320 bd	Structural	5/16	1-1/4	6d	400	13	10	600	18	13	780	23	16	1020	35	22	560	840	1090	1430
Structural 1/302 1/306	Panels -	3/8*	1.20		460	19	14	720	24	17	920	30	20	1220	43	24	645 746	1010	1290	1710
1902 1-1/2 10d 60 22 16 1020 29 20 130 38 22 170 51 28 650 1502 Wood Shuckman 38 ² 1-1/4 6d 300 12 55 560 16 12 700 51 28 655 660 77 16 555 660 77 16 555 660 77 170 61 855 756 660 17 170 600 45 20 15 170 000 45 20 158 170 000 45 20 160 1300 170 1000 45 20 120 1600 1300 170 1000 45 20 100 1500 130 100 450 130 100 450 130 100 450 130 130 181 174 48 22 870 1200 1600 1200 1600	Structural I	15/32	1-340	00	560	14	11	860	18	14	1100	24	17	1460	37	23	785	1205	1540	2045
Srie 1-14 6d 360 13 9.5 540 16 16 770 24 14 900 37 16 900 37 16 900 37 16 900 37 16 900 37 16 900 37 16 900 37 16 900 37 16 900 37 16 900 37 16 900 37 16 900 32 17 1070 22 11 100 11 100 11 100 20 13 100 11 100 20 13 100 100 13 100 100 11 100 20 120<		15/32	1-1/2	10d	680	22	16	1020	29	20	1330	36	22	1740	51	28	950	1430	1860	2435
Veloci Structural Panels 38 -1-m 0 400 11 8.5 600 15 11 780 20 13 1020 32 17 600 450 15 110 780 20 13 1020 32 17 600 450 155 110 780 20 13 1020 32 17 600 45 26 155 150 220 15 820 31 111 110 450 21 615 885 1150 Media 450 15 11 10 700 22 14 800 23 17 100 45 22 160 160 120 1002 1-12 10d 650 12 400 103 1020 28 16 170 29 21 300 500 770 123 1020 20 123 1020 20 123 1020 22 20 <t< td=""><td></td><td>5/16</td><td>1-14</td><td>6d</td><td>360</td><td>13</td><td>9.5</td><td>540</td><td>18</td><td>12</td><td>700</td><td>24</td><td>14</td><td>900</td><td>37</td><td>18</td><td>505</td><td>755</td><td>980</td><td>1260</td></t<>		5/16	1-14	6d	360	13	9.5	540	18	12	700	24	14	900	37	18	505	755	980	1260
Since International Stream 38° bit Matrix 1-38 6d 440 17 12 640 25 15 17 1000 45 20 615 820 31 17 1000 45 20 615 820 31 17 1000 45 20 615 820 31 17 1000 45 20 615 820 31 17 1000 45 20 615 820 11 100 42 21 617 170 42 21 1005 137 Parkelessing 1902 1-1/2 10d 620 12 14 600 25 15 120 39 20 730 1065 1370 Psychold 5916 1-14/4 Natil (galvanized casing) 64 200 16 450 16 650 17 720 21 450 450 170 730 100 305 707 670 870 870 <td>Mood</td> <td>3/8</td> <td>1-174</td> <td>~~~~</td> <td>400</td> <td>11</td> <td>8.5</td> <td>600</td> <td>15</td> <td>11</td> <td>780</td> <td>20</td> <td>13</td> <td>1020</td> <td>32</td> <td>17</td> <td>560</td> <td>840</td> <td>1090</td> <td>1430</td>	Mood	3/8	1-174	~~~~	400	11	8.5	600	15	11	780	20	13	1020	32	17	560	840	1090	1430
Panelse Statistics 1/102 (1022) 1-300 0 400 (000) 13 (102) 10 (102) 1000 (102) 10000 (102) 10000 (102) 10000 (102) 10000 (102) 10000 (102) 10000 (102) 10000 (102) 10000 (102) 10000 (102) 100000(102) 100000(102) 100000(102) 100000(102) 100000(102) 100000(102) 100000(102) 100000(102) <th< td=""><td>Structural</td><td>3/8*</td><td>4.000</td><td></td><td>440</td><td>17</td><td>12</td><td>640</td><td>25</td><td>15</td><td>820</td><td>31</td><td>17</td><td>1060</td><td>45</td><td>20</td><td>615</td><td>895</td><td>1150</td><td>1485</td></th<>	Structural	3/8*	4.000		440	17	12	640	25	15	820	31	17	1060	45	20	615	895	1150	1485
Sheatming 1502 1-12 10d 620 22 14 920 30 17 100 620 22 14 920 30 17 100 620 22 14 920 30 17 100 620 22 16 130 1200 160 1800 17 720 21 500 570 870 870 870 870 17 720 21 500 770 870 870 870 870 870 870 870 870 870 870 <	Panels -	15/32	1-3/0	- ⁰⁰	400	15	11	760	19	14	900	28	1/	1170	42	21	730	1065	1200	1040
Instructure 11-12 1002 11-12 1002 1002 28 16 1330 33 18 1740 48 22 950 1430 16800 Siding 5/16 1-14 Mail (galvanized casing) 6d 260 13 420 16 550 17 720 21 300 600 770 Particeloard 38 1-38 Nail (common or galvand box) 240 15 500 17 400 19 600 22 305 650 670 670 Signaphing- 38 1/2 Mail (galvanized casing) 240 15 500 17 460 22 22 440 670 670 Signaphing- 38 1/2 10 240 15 500 17 460 21 630 22 335 550 645 Galvar 1/2 104 370 21 550 22 700 24 600	Sheathing **	15/32			620	22	14	920	30	17	1200	37	19	1540	52	23	870	1290	1680	2155
Epyencid Siding 5/16 38 1-14 1-38 Nall (galvanized roofing) (WS Tration) All (galvanized roofing) (Siding) 420 480 16 480 550 16 17 200 720 22 24 300 500 500 770 770 770 770 770 800 770 800 770 770 770 800 770 800 <td></td> <td>19/32</td> <td>1-1/2</td> <td>100</td> <td>680</td> <td>19</td> <td>13</td> <td>1020</td> <td>26</td> <td>16</td> <td>1330</td> <td>33</td> <td>18</td> <td>1740</td> <td>48</td> <td>22</td> <td>950</td> <td>1430</td> <td>1860</td> <td>2435</td>		19/32	1-1/2	100	680	19	13	1020	26	16	1330	33	18	1740	48	22	950	1430	1860	2435
Siding 5/16 1-1/4 64 280 13 4/20 16 650 17 720 21 360 760 Particleboad 388 1-3/8 1	Playcod			Nail (galvanized casing)				ļ					_							
Jail T-Set Nati (common or gativatized box) Zul Streaming - Streaming - Glue" Val Streaming - Streaming - S	Siding	5/16	1-1/4	6d	280	1	3	420	1	6	550	1	7	720	2	1	390	590	770	1010
Particleoard Strakting	<u> </u>	312	(~310	Nail (common or	364		0	490		Q	920		.0	929	~ ~	۷.	430	0/0	97.0	1130
Generating-r 38 6d 240 15 380 17 460 19 600 22 335 505 645 Cloud* and M2 38 8d 220 18 380 20 480 21 630 23 355 505 645 M2 Etherion 12 380 12 830 21 630 23 320 365 530 670 580 770 248 202 25 520 770 101 370 21 610 23 790 24 620 25 520 770 101 360 500 785 1001 310 21 610 23 790 24 620 25 520 770 101 300 500 785 1031 102 1040 25 500 755 105 104 104 1040 26 500 55 105 104 104 104	Particleboard			galvanized box)																
Object and M 38 64 260 18 380 20 480 21 630 23 365 530 670 VA2 "Exterior 1/2 280 18 420 20 480 21 630 23 365 530 670 VA2 "Exterior 1/2 10d 370 21 550 23 1720 24 920 25 520 770 1010 Strip 400 21 610 23 790 24 1040 26 900 855 1105 Strip 11/2 110 (galvanized modifing) 110 (galvanized modifing) 340 400 400 5.0	(M.S."Exterior	3/8		6d	240	1	5	360	1	7	460	1	9	600	2	2	335	505	645	840
M2 = Extenior 1/2 200 16 4/20 200 340 2/2 7/00 2/4 3/00 3/00 5/00 7/00 2/4 3/00 3/00 3/00 5/00 7/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00 2/00 2/4 3/00	Glue" and	3/8		8d	260	1	8	380		0	480	2	21	630	2	3	365	530	670	880
Gauer Site 400 2.1 610 2.3 790 2.4 1040 2.6 560 855 1105 Weischmid 1/2 11 (de get/: rooting mail (03/227) 340 4.0 460 5.0 5.20 5.5 475 645	M-2 "Exterior	1/2		104	280	2	8	420		20	720	2	2	920	2	5	390	590	/50	980
Nail (galvanized roofing) Structural 1/2 Nail (galvanized roofing) 340 4.0 460 5.0 520 5.5 475 645 Structural 1/2 11/2 (11/3 a, galv. roofing.mail (01/207) 340 4.0 460 5.0 520 5.5 475 645	Giue)	5/8		t	400	2	1	610		3	790	2	4	1040	2	6	560	855	1105	1455
Hiberboard A 1-1/2 long A 1/10 linedy	Structural Fiberboard	1/2		Nall (galvanized roofing) 11 ga. galv. roofing.nall (0.120" x 1-1/2" long x 7/16" head)			1	340	4	0	460	5	.0	520	5	.5		475	645	730
Sheathing 25/32 11 ga. galx. roofing nall (0.120" x 1-514" long x 3/8" head) 340 4.0 460 5.0 520 5.5 475 645	Sheathing	25/32		11 ga. galv. roofing.nail (0. 120" x 1-3/4" long x 3/8" head)	{			340	4	.0	460	5	.0	520	5	5		475	645	730

Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls^{1,3,6,7}

of structural panel shear walk, 43.7.2 for particleboard shear walks, and 4.3.73 for fiberboard share walks. See Appendix A for common and box values shown for 15/32 inch sheathing with same nailing provided (a) studs are spaced a maximum of 16 inches on center, or (b) panels are applied

er than Douglas-Fir-Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the 1-(0.5-G)], where G = Specific Gravity of the framing lumber from the NDS (Table 11.3.2A). The Specific Gravity Adjustment Factor shall not be greater than 1. sture content less than or equal to 19% at time of fabrication and panel stiff mels are used. G, values shall be permitted to be increased by 1.2. ion. G, values stall be multiplied by 0.5. st than 6° on center on either side, panel joints shall be offset to fall on diffe nel cleges and multis at all panel cleges shall be statesement. G_n, are based on nail slip in framing with moisture a 4-ply or 5-ply plywood panels or composite panels framing is greater than 19% at time of fabrication, (oth faces of a shear wall and nail spacing is less that schell be 3th pomingl or greater at adjoining panels

ASCE | KNOWLEDGE & LEARNING

89

Example Shear Wall - LATERAL

A stud shear wall – assume 2x4 SPF #2 Studs, 16" OC, with 7/16" Structural I sheathing and 8d nails at 6" O.C. at panel on edges and 12" OC intermediate fasteners.

What is the shear (seismic) diaphragm reaction allowed and the chord forces on the wall?

Example Shear Wall - LATERAL

The aspect ratio = h/l = 9/8 - 1.125 < 2 allowed for structural sheathing and seismic (slide 84)

Check max shear allowed in Table 4.3A

= nominal shear/2

ASCE | KNOWLEDGE & LEARNING

Shear Walls – Also Have Tables for Gyp. Board -LATERAL

					Wo	od-ba	ised	Pane	ls ⁴										
	Minimum	Minimun							SEI	A SMIC							W	B ND	
Sheathing	Nominal	Penetration	Fastener				Pa	nel Edg	ge Fast	ener Sp	acing (i	in.)				Par	Spaci	e Faste ng (in.)	ner
Material	Panel Thickness	in Framing Member or	Type & Size		6			4			3			2		6	4	3	2
	(in.)	Blocking (in.)	ł	vs (pif)	(kip	Ga s∕in.)	vs (plf)	(kip	3 _a s/in.)	Vs (plf)	G (kips	ia 5/in.)	vs (plf)	G (kip:	i₀ s∕in.)	v _w (plf)	v _w (plf)	v _w (plf)	v, (pli
			Nall (common or galvanized box)		OSB	PLY		OSB	PLY		OSB	PLY		OSB	PLY				
Wood Structural	5/16	1-1/4	6d	400	13	10	600	18	13	780	23	16	1020	35	22	560	840	1090	143
Panels -	3/8 ⁴ 7/16 ²	1-3/8	84	460	19 16	14	720	24 21	17	920	30 27	20 19	1220	43 40	24	645 715	1010	1290	1710
Structural I	15/32	1-010		560	14	11	860	18	14	1100	24	17	1460	37	23	785	1205	1540	2045
	15/32	1-1/2	10d	680	- 22	16	1020	29	20	1330	36	22	1740	51	28	950	1430	1860	243
	5/16	1-1/4	6d -	360	13	9.5	540	18	12	700	24	14	900	37	18	505	755	980	126
Wood	3/82			440	17	12	646	25	15	820	31	17	1020	45	20	615	895	1150	148
Structural Panels –	7/16 ²	1-3/8	8d	480	15	11	700	22	14	900	28	17	1170	42	21	670	980	1260	1640
Sheathing ^{4,6}	15/32			520	13	10	760	19			-						1065	1370	179
	19/32	1-1/2	10d ·	680	19	14	1020	30 26	N	ote	2	sta	ates	s th	nat	if	1290	1860	2150
Playand			Nall (galvanized casing)						•••	• • •	_	• ••		• • •		••			
Siding	5/16	1-1/4	6d	280		13	420		1	6"	ററ) c	tud	c	110	2	590	770	1010
Berdelebered	310	1-310	Nall (common or	320		10	400	_		U		53	luu	з,	us		670	8/0	115
Sheathing -			galvanized box)	-						1	5/2	22	valı						
(M-S "Exterior	3/8		00 8d	240		15	380				0/0	2	van	uc.	5		530	670	880
Glue" and M-2 "Exterior	1/2			280		18	420	2	20	540	2	2	700	2	4	390	590	755	980
Glue")	1/2		10d	370		21	550		23	720	2	4	920	2	5	520	770	1010	1290
	5/8			400		21	610		3	790	2	4	1040	2	6	560	855	1105	1453
Structural Fiberboard	1/2		Nall (galvanized roofing) 11 ga. galv. roofing nail (0.120" x 1-1/2" long x 7/16" head)				340	4	.0	460	5	.0	520	5	.5		475	645	730
Sheathing	25/32		11 ga. galv. roofing nail (0. 120" x 1-3/4" long x 3/8" head)				340	4	.0	460	5	.0	520	5	.5		475	645	730

d 4.3.7.3 for fiberboard shear walls. See Appendix A for common and box ne tuds are spaced a maximum of 16 inches on center, or (b) panels are applied

where the structure is the structure is a structure of the structure is a structure is a structure of the structure is a structure of the structure is a structure of structure is a structure of the structure is a struct

Example Shear Wall - LATERAL

Nominal shear per unit length = 560 lb/ft (seismic)

Allowable shear per unit length = 560/2 = 280 lb/ft

Adjust for specific gravity adjustment factor = [1 - (0.5 - SG)]

Table 11.3.2A - NDS - SG SPF = 0.42

Allowable diaphragm reaction = $280 \times 8 \times [1 - (0.5 - 0.42)] = 2,061$ lb

For this reaction, the chord forces are:

Assume (2) 2x4 on each edge d = 96 - 3 = 93'' = 7.75'

Chord forces = $2,061 \times 9/7.75 = \pm 2,400$ lb

ASCE | KNOWLEDGE & LEARNING

93

Table 11.3.1 Applicability of Adjustment Factors for Connections - VERT. & LATERAL

			ASD only				LRFD only								
			Load Duration Factor ¹	Wet Service Factor	Temperature Factor	Group Action Factor	Geometry Factor ³	Penetration Depth Factor ³	End Grain Factor ³	Metal Side Plate Factor ³	Diaphragm Factor ³	Toe-Nail Factor ³	אר Format Conversion Factor	Resistance Factor	Time Effect Factor
Lateral Loads															
Dowel-type Fasteners (e.g. bolts, lag screws, wood screws, nails, spikes, drift bolts, & drift pins)	Z' = Z	x	C _D	C _M	C _t	Cg	C _A	-	C _{eg}	-	C _{di}	C _{tn}	3.32	0.65	λ
Split Ring and Shear Plate Connectors	P' = P $Q' = Q$	x	C _D C _D	C _M C _M	C _t C _t	C _g C _g	$egin{array}{c} C_{\Delta} \ C_{\Delta} \end{array}$	$egin{array}{c} {C_d} \\ {C_d} \end{array}$	-	C _{st}	-	-	3.32	0.65	λ
Timber Rivets	$\begin{array}{l} P' = P \\ Q' = Q \end{array}$	x	C _D C _D	C _M C _M	C _t C _t	-	- C _Δ ⁵	-	-	$\begin{array}{c}C_{st}{}^{4}\\C_{st}{}^{4}\end{array}$	-	-	3.32	0.65	λ
Spike Grids	Z' = Z	х	CD	C _M	Ct	-	C_{Δ}	-	-	-	-	-	3.32	0.65	λ
					With	drawal	Loads								
Nails, spikes, lag screws, wood screws, & drift pins	W' = W	x	C _D	C _M ²	C _t	-	-	-	C _{eg}	-	-	C _{tn}	3.32	0.65	λ

			Tabl	e 12.2A Lag Scre	ew Reference Wi	thdrawal Design	Values, W ¹				
Tabulated withdrawal d	esign values (W)	are in pounds pe	r inch of thread p	enetration into sid	le grain of wood n	nember. Length c	f thread penetrat	ion in main memb	er shall not inclu	de the length of th	e tapered tip.
					Lag	g Screw Diamete	r, D				
Specific Gravity, G ²	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	7/8"	1"	1-1/8"	1-1/4"
0.73	397	469	538	604	668	789	905	1016	1123	1226	1327
0.71	381	450	516	579	640	757	868	974	1077	1176	1273
0.68	357	422	484	543	600	709	813	913	1009	1103	1193
0.67	349	413	473	531	587	694	796	893	987	1078	1167
0.58	281	332	381	428	473	559	641	719	795	869	940
0.55	260	307	352	395	437	516	592	664	734	802	868
0.51	232	274	314	353	390	461	528	593	656	716	775
0.50	225	266	305	342	378	447	513	576	636	695	752
0.49	218	258	296	332	367	434	498	559	617	674	730
0.47	205	242	278	312	345	408	467	525	580	634	686
0.46	199	235	269	302	334	395	453	508	562	613	664
0.44	186	220	252	283	312	369	423	475	525	574	621
0.43	179	212	243	273	302	237	409	459	508	554	600
0.42	173	205	235	264	291	344	395	443	490	535	579
0.41	167	198	226	254	281	332	381	428	473	516	559
0.40	161	190	218	245	271	320	367	412	455	497	538
0.39	155	183	210	236	261	308	353	397	438	479	518
0.38	149	176	202	227	251	296	340	381	422	461	498
0.37	143	169	194	218	241	285	326	367	405	443	479
0.36	137	163	186	209	231	273	313	352	389	425	460
0.35	132	156	179	200	222	262	300	337	373	407	441
0.31	110	130	149	167	185	218	250	281	311	339	367

Get Cg, W, Z and Other Values from Tables VERT. & LATERAL

ASCE | KNOWLEDGE & LEARNING

Get Cg, W, Z and Other Values from Tables VERT. & LATERAL

able	e 12/	4	BOLTS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections ^{1,2} for sawn lumber or SCL with both members of identical specific gravity																			
Thick	kness																					
ы	5	Ē						G-0	55											G-0	146	
e a a a		l 1	G=0.67				Mixed Maple				G=0.50			G=0.49				Douglas Fir(S)				
Mei	Sid	Dia		Red	Oak		Southern Pine				Douglas Fir-Larch				Douglas Fir-Larch(N)				Hem-Fir(N)			
			7	7	7	7	7	7	7	7	7	7	7	7	7	7.	7	7	7	7	7	7
۲m in.	in.	in.	Ibs.	Ibs.	ibs.	Ibs.	HI Ibs.	Ibs.	Lps.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	. It
		1/2	650	420	420	330	530	330	330	250	480	300	300	220	470	290	290	210	440	270	270	
1-1/2 1-1/		5/8	810	500	500	370	660	400	400	280	600	360	360	240	590	350	350	240	560	320	320	
	1-1/2	3/4	970	580	580	410	800	460	460	310	720	420	420	270	710	400	400	260	670	380	380	
		7/8	1130	660	660	440	930	520	520	330	850	470	470	290	830	460	460	280	780	420	420	
		1	1290	740	740	470	1060	580	580	350	970	530	530	310	950	510	510	300	890	480	480	
		1/2	760	490	490	390	620	390	390	290	560	350	350	250	550	340	340	250	520	320	320	
1 2/4	1 2/4	5/8	940	590	590	430	770	470	470	330	700	420	420	280	690	410	410	280	650	380	380	
1-3/4 1-	1-5/4	7/8	1320	770	770	510	1080	610	610	300	990	550	550	340	970	530	530	320	910	500	500	
		1	1510	860	860	550	1240	680	680	410	1130	610	610	360	1110	600	600	350	1040	560	560	
		1/2	770	480	540	440	660	400	420	350	610	370	370	310	610	360	360	300	580	340	330	-
		5/8	1070	660	630	520	930	560	490	390	850	520	430	340	830	520	420	330	780	470	390	
2-1/2	1-1/2	3/4	1360	890	720	570	1120	660	560	430	1020	590	500	380	1000	560	480	360	940	520	450	
		7/8	1590	960	800	620	1300	720	620	470	1190	630	550	410	1170	600	540	390	1090	550	500	
		1	1820	1020	870	660	1490	770	680	490	1360	680	610	440	1330	650	590	420	1250	600	550	
		1/2	770	480	560	440	660	400	470	360	610	370	430	330	610	360	420	320	580	340	400	
	1 1/2	2/4	1070	800	760	590	940	260	620	500	1200	520	540	460	1100	520	530	450	1140	470 520	490	
	1-1/2	7/8	1890	960	900	830	1680	720	770	630	1590	630	680	550	1570	600	650	530	1470	550	600	
		1	2410	1020	1080	890	2010	770	830	670	1830	680	740	590	1790	650	710	560	1680	600	660	
		1/2	830	510	590	480	720	420	510	390	670	380	470	350	660	380	460	340	620	360	440	7
		5/8	1160	680	820	620	1000	580	640	520	930	530	560	460	920	530	550	450	880	500	510	
3-1/2	1-3/4	3/4	1530	900	940	780	1330	770	720	580	1250	680	640	520	1240	660	620	500	1190	600	580	
		7/8	1970	1120	1040	840	1730	840	810	640	1620	740	710	550	1590	700	690	530	1490	640	640	
	L	1	2480	1190	1130	900	2030	890	880	670	1850	790	780	590	1820	750	760	570	1700	700	700	
		1/2	830	590	590	530	1170	520	520	460	1120	490	490	430	/10	480	480	420	1070	460	460	
	3-1/2	3/4	1290	1100	1100	050	1600	060	060	710	1610	870	870	630	1600	850	850	600	1540	800	800	
	5-1/2	7/8	2540	1410	1410	1030	2170	1160	1160	780	1970	1060	1060	680	1940	1040	1040	650	1810	980	980	
		1	3020	1670	1670	1100	2480	1360	1360	820	2260	1230	1230	720	2210	1190	1190	690	2070	1110	1110	
	1	5/8	1070	660	760	590	940	560	640	500	880	520	590	460	870	520	590	450	830	470	560	-

Conclusion

Thank you for your attention!

Any questions?

m.mcginley@louisville.edu

See <u>www.awc.org</u> for free education modules and info.

ASCE | KNOWLEDGE & LEARNING