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What is Residual Stress?

 Although Steel is considered to be homogenous material, the 
process of fabrication allows portions of an element to form 
differently than others. 
 Rolled shapes may go through the rollers hot or cold
 For cold rolled, it is understood that 

the steel is exposed to stresses that 
bring it into its plastic region to have 
permanent deformation.  When an 
element is stressed to the point that it 
deforms and it does not return to its 
original form, portion of the energy 
that was received remains within it.  
That is translated to a stress that is 
carried within the structure of that 
element.  That is residual stress.
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What is Residual Stress?

 Continuing on causes of residual stress, 
 For hot rolled elements, the residual stresses are not of the same 

scale, but they can still be significant, especially on larger 
elements.  Those are developed by the uneven rate of cooling in 
different areas.  Areas that cool quicker, such as the middle of the 
web or the tips of flanges of a W-Section tend to have residual 
compressive stress, whilst areas that cool slower, such as the 
intersections of web and flange, develop residual tensile stress. 
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What is Residual Stress?

 Residual stress is addressed as 
drops of the scale of 10-15ksi may 
have an effect on the reliability of a 
design.  The greatest reductions in 
strength are noticed in columns that 
have a “Slenderness ratio” between 
70 – 90.

 Slenderness ratio is the result of the 
division of the effective length “L” 
over the radius of gyration “r” 
– The former is essentially the 

length of the element multiplied 
by the “k” factor

– The latter is a factor that can be 
found in the AISC User's Manual.

λ= L
r
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Qualities of Different 
Shapes
 Some shapes are more practical to fabricate
 Some shapes have better response to compressive loads
 Some shapes handle bending better
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Qualities of Different 
Shapes
  Other advantages / disadvantages:

 Round columns have less surface to paint or fireproof
 Round columns have constanr “r” and “I” values
 They have better torsional resistance and less resistance to 

wind loads
 Square or round columns are more economical and efficient 

unless moments play an important role, especially in larger 
structures

 Hollow columns are easier to keep clean, but also easier to 
be exposed to corrosion over W, S, or T shapes
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Buckling

 Main difference of a 
compressive axially loaded 
member over a tensile 
axially loaded member is 
“buckling.”
 That is the “loss of compressive 

load carrying capacity resulting 
from a change in the geometric 
formation of a member”

 A slight defect, or a slight 
eccentricity, may generate the 
deflection that will lead to a 
column's failure

NY	  City	  Transit	  released	  photos	  of	  Cortlandt	  St	  sta5on	  the	  week	  of	  24	  September	  2001.	  
Subway	  columns	  are	  buckled	  from	  the	  impact,	  near	  the	  center	  of	  the	  sta5on.All	  of	  this	  is	  
gone.Source:	  hEp://www.columbia.edu/~brennan/abandoned/Cort-‐damage-‐09.jpg
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Buckling

 Design equation:
 The ultimate axial load is equal 

or less than the factored 
nominal strength

Pu≤Φ Pn
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Strength of Isolated 
Columns
 Euler's solution to 

theoretical elastic behavior:
– Based on the following 

assumptions:
 The column is pin connected
 It is perfectly straight
 Load is perfectly axial
 Behaves elastically and does 

not yield
 No residual stresses
 Bends and buckles about a 

principal axis w/out torsion. 

Pu≤Φ Pn
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Strength of Isolated 
Columns

 Euler's elastic buckling:
 The buckled shape resembles ½ a 

sinusoidal distribution.
 

 The buckling load Pe is proportional to 
the Moment of Inertia of the element

 The buckling load is inversely 
proportional to the square value of the 
length of the element (    )
• The longer the element the more 

susceptible to buckling

 Buckling is proportional to the Young's 
modulus of elasticity but independent of 
the yield strength of the material (Fy) 

PE=
π 2E I
L2

π2 E I
L2

L2
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Consider the Effects of 
Axial Load on a W Shape

 X & Y are Principal Axes

 I_max = Ix (Strong Axis)
 Higher Moment of Inertia

 I_min = Iy (Weak Axis)
 Lower Moment of Inertia

 Buckling will be about the (y) 
weak axis, unless the weak 
axis is restrained.
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Consider the Effects of 
Axial Load on a W Shape

π 2 EI x
L2

π 2 EI y
L2
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Addressing Euler's 
Buckling Load w.r.t. Stress

 Stress can be viewed as Load (P) divided by Area (A)
 If we divide both sides of Euler's equation by Area →

 But since the radius of gyration (r)is equal to the square root of 
moment of inertia (I) divided by area (A)...

 Thus Euler's elastic buckling stress is:

PE
A = π

2 E I
AL2

r=√ IA
F E=

π 2 E

( Lr )
2

r2= I
AΟR

ΟRF E=
π2 E r2

L2
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Bringing Back the Factor 
of Boundary Conditions

π 2 E

( K Lr )
2
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Load Deflection Behavior

 The Length “L” divided by the 
radius of gyration “r” is the 
slenderness ration of a column

 By plotting a graph of the stress 
in the ordinates and the 
slenderness ratio in the 
abscissa...

 r minimum corresponds to I 
minimum

 (L/r) max corresponds to r min
 Weaker axis of W section (lower 

I) controls in buckling

π 2E

( Lr )
2
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Load – Deflection Behavior

 Effects of deflection
 The column bends as soon as it is 

loaded, i.e. buckling is not an 
instantaneous effect.

 There is already stress in the column 
before loading.

 Based on Elastic theory (material does 
not yield) P is asymptotic to PE. No 
loss of strength due to deflection

 In reality material yields, and the 
additional bending stress from 
deflection causes earlier yielding and 
loss of strength

 Small deflection → little loss of 
strength, and vice versa

PE=
π 2E I
L2
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Effects of Load 
Eccentricity
 Effects of eccentricity 

(eccentrically applied 
loading) are identical to the 
effects of Δ0
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Definition and Effects of 
Residual Stresses
 Residual stress definition

 They are developed within a member during manufacturing.
 They are self equilibrating (their sum is zero) as they exist in the 

absence of any external loading.
 They are generated by:

 Uneven cooling of hot rolled elements
 Uneven cooling of welded built up elements
 Cold forming or cambering of members
 Punching, shearing, or cutting
 Welding at specific points

 Effect
 Varying behavior at specific points, areas, or along an axis

Localized

Along 
entire 
length
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Causes for Residual Stress

 Cooling of Rolled Shapes
 The uneven rate of cooling of the 

cross section.
 Member is allowed to coll slowly.  

Some portions (e.g. flange tips) 
cool quicker because they have 
more surface exposed to air

 Typically residual stresses are:
 Quick cool → Compressive
 Slow cool → Tensile

 Residual stresses are normal, not 
shear stresses

 Residual stresses are higher on 
welded shapes than rolled shapes

σ resmax≈10
ksi tο15ksi∫ σres dA=0
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The Stump Column Test

 Residual stresses reduce 
the stiffness of a member
 Investigated by testing a 

“stub column,” i.e. too short 
to buckle.

 If there are no residual 
stresses, all fibers of the 
cross section yield 
simultaneously when the 
applied load reaches

• ...i.e. when the applied 
stress reaches P

A
=F y

A×F y



  

 

21

The Stump Column Test

 Residual stresses reduce the 
stiffness of a member
 If residual stresses are present 

the first parts of the element that 
will yield are the tips of the 
flanges.  

 Then the effect will extend further 
beyond the tips of the flanges and 
the central portion of the web

 And eventually the whole section 
will yield 

 Although the maximum load will 
still be                , the load 
deflection curve is not the same

P=A×F y
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Using the Tangent 
Modulus

 The P vs Δ curve..
 Can be replotted in the 

form of average applied 
stress vs strain.

 Et is a measure of the 
cross section's average 
stiffness, considering 
that portions of the 
cross section are 
yielded, while others 
are still elastic

σ avg=
P
A
=average applied stress

ε= Δ
L0

=applied strain
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Effect of Residual Stresses 
on Column Strength

 Consider a column that is initially perfectly straight
 The buckling load can be obtained using the “tangent 

modulus theory” that was just discussed.
 The buckling load can be computed using Euler's 

equation, but replacing E with Et.
 The resulting buckling load is referred to as        

“Tangent Modulus buckling load”
 Similarly we can define the                                  

“Tangent Modulus buckling stress”
 This leads to two classes of buckling:

• Elastic, and
• Inelastic

Pt=
π 2 Et I

(K×L)2

F t=
Pt
A

=
π 2 Et

( K×L
r )

2
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Elastic / Inelastic Buckling

 Elastic
 No yielding of the cross section 

occurs prior to buckling and Et=E at 
buckling

  predicts buckling

 Inelastic
 Yielding occurs on portions of the 

cross section prior to buckling and 
there is loss of stiffness.

  predicts buckling

π 2 E

( K×L
r )

2

F t=
P t
A

π 2 Et

( K×L
r )

2F E=
π 2 E

( K×L
r )

2

FT=
π 2 ET

( K×L
r )

2
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Strength of Columns

 The discussion that was held until now indicates that the 
strength of a column is dependent upon the following:
 Slenderness
 End restraint 
 Eccentricity (loading or form)
 Yielding and Residual stresses

 All of the above factors need to be addressed in order to 
determine the strength of a real column but there are two 
approaches to do that:
 Experiments (we shall not engage in this!)
 Numerical Analysis

K factor
λ= L
r

Must consider variability 
in these factors
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Numerical Method of 
Analysis

 The AISC provides a series of equations that allow us to 
compute the column strength:

 Nominal compressive strength
where Ag is Area gross, and Fcr is the critical or buckling stress

 Design compressive strength
where Φ is the factor of safety and it is equal to 0.9

 Criterion for design

Pn=Ag×Fcr

ΦPn=Φ×Ag×F cr

Pu≤Φ×Pn
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Numerical Method of 
Analysis

 The AISC provides a series of equations that allow us to 
compute the column strength:

 Nominal compressive strength
where Ag is Area gross, and Fcr is the critical or buckling stress

 Design compressive strength
where Φ is the factor of safety and it is equal to 0.9

 Criterion for design

Pn=Ag×Fcr

ΦPn=Φ×Ag×F cr

Pu≤Φ×Pn
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Computing the Nominal 
Compressive strength

 The definition is: for Euler's buckling Stress

 When OR   → Inelastic Buckling

  (E3-2)

 When OR   → Elastic Buckling

              (E3-3) 
For elastic buckling we adopt 0.877 times the Euler's formula, 
accounting for geometric imperfections.

 Note that Fcr is independent of Fy

F E=
π 2 E

( KLr )
2

KL
r

≤4.71√ EF y

F y

Fe
≤2.25

Fcr=[0.658( FyF E)]F y
KL
r

>4.71√ EF y

F y

Fe
>2.25

F cr=0.877Fe



  

 

29

The Red Line for 
Elastic / Inelastic

 Inelastic Buckling



 Note: As KL/r→ 0 Fcr→Fy

 Elastic Buckling



Fcr=[0.658( FyF E)]F y=[0.658(
F y

π2E

(KLr )
2)]F y

Fcr=0.877FE=0.877
π 2 E

( KLr )
2
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The Red Line for 
Elastic / Inelastic

 Taking the limit:         for for 36 and 50 grade steel

   → 36 ksi gives 133.7

   → 50 ksi gives 113

 Take a typical column e.g W12x53, of Lu=12' and r=2.48”.  
With K of 1.0 this W section will give KL/r=58.  In either of the 
grades of steel this column will buckle in the inelastic range

KL
r

=4.71√ EF y

4.71√ 29,000ksi36ksi
=133.681

4.71√ 29,000ksi50ksi
=113.432
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Relation of Critical Stress 
and Slenderness Ratio

 At



  Thus 



 The transition from 
elastic to inelastic 
occurs at an applied 
axial compression 
stress of 0.39Fy

4.71√ EF y

.877 FE0.668
(KLr )

2 F y

π2E

F E=
π 2 E

( KLr )
2

KL
r =4.71√ EF y

F E=
π 2 E

( KLr )
2=
π2 E F y

4.712 E
=0.44F y

F y

F E
=2.25

Fcr=0.877FE=0.877∗.44 F y=0.39Fy
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Basic Procedures for 
Analysis

 Given the shape, the K factor, the Length and the type of 
steel can we determine the Φpn?

 Well, …..

 Fcr depends uponKL/r and Fy,
 The r we chose is the weaker one →(KL/r) max controls

 Compute (KL/r)x and (KL/r)y, and larger will govern

ΦPn=Φ×Ag×F cr



Wide Flange Shape subjected to axial loading
Problem Statement:
Determine the capacity in axial loading of the given W shape.  The element is pinned at top and bottom with
no intermediate bracing, therefore having an unbraced length of 15ft in both directions.Use A992 steel

Area Ag 15.8in2:= Young's Modulus of Elasticity E 29000ksi:=

Bolt diameter db 0.875in:=Length: Lu 15ft:=

radius of gyration y ry 2.56in:= Yield Stress: Fy 50ksi:=

radius of gyration x rx 4.37in:= Ultimate Strength: Fu 65ksi:=

K factor K 1:= Factor of Safety phi ϕ 0.9:=

Solution Method 1: Using Chapter E Equations:
1) Determining the governing slenderness ratio

λx
K Lu⋅

rx
:=

15ft 12⋅
in
ft







4.37in
λx 41.19=

λy
K Lu⋅

ry
:=

15ft 12⋅
in
ft







2.56in
λy 70.313=

r min rx ry, ( ):= r 2.56 in⋅= governing radius of gyration

The above was already obvious but it was carried on just to "academicallly" justify the numbers

2) Calculating Euler's Buckling Stress

FE
π
2 E⋅

K Lu⋅

r








2
:=

3.142 29000⋅ ksi

15ft 12⋅
in
ft

2.56in










2
FE 57.894 ksi⋅=

3) Determining if the buckling will be elastic or inelastic.

Buckling if
K Lu⋅

r








4.71
E
Fy

≤ "Inelastic", "Elastic", 








:= Buckling "Inelastic"=

Alternatively we can also follow the process below:

Fy
FE

0.864= Buckling if
Fy
FE








2.25≤ "Inelastic", "Elastic", 









:= Buckling "Inelastic"=

4) Calculating the Buckling Stress (Fcr) and the load capacity of the section:

Fcr 0.658

Fy

FE
















 Fy⋅:= 0.658

50ksi

57.89ksi












 50⋅ ksi Fcr 34.832 ksi⋅=

ΦPn ϕ Ag⋅ Fcr⋅:= 0.9 15.8⋅ in2 34.832⋅ ksi ΦPn 495.314 kip⋅=



Solution Method 2: Using Table 4-22:
1) Determining the governing slenderness ratio

λy
K Lu⋅

ry
:=

16ft 12⋅
in
ft







2.56in
λy 70.313=

2) Using table we locate the KL/r value
corresponding to the Fy used for factrized critical
stress:

The value indicated would be between 31.1 and
31.4.  Let's take 31.3

ΦFcr 31.3ksi:=

Note:  From our previous calculations:

Fcr 34.832 ksi⋅=

Therefore:

ϕ Fcr⋅ 31.349 ksi⋅=

3) Calculating the capacity of the element:

ΦPn ϕ Ag⋅ Fcr⋅:=

0.9 15.8⋅ in2 34.832⋅ ksi

ΦPn 495.314 kip⋅=



Solution Method 3:
Using Table 4-1 for
 W shapes pp 4-12 to
4-23:
Oh you will love this one!  All you need
is the unbraced length and the shape:

jcharalambides
Rectangle

jcharalambides
Line




