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What is Residual Stress?

 Although Steel is considered to be homogenous material, the 
process of fabrication allows portions of an element to form 
differently than others. 
 Rolled shapes may go through the rollers hot or cold
 For cold rolled, it is understood that 

the steel is exposed to stresses that 
bring it into its plastic region to have 
permanent deformation.  When an 
element is stressed to the point that it 
deforms and it does not return to its 
original form, portion of the energy 
that was received remains within it.  
That is translated to a stress that is 
carried within the structure of that 
element.  That is residual stress.
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What is Residual Stress?

 Continuing on causes of residual stress, 
 For hot rolled elements, the residual stresses are not of the same 

scale, but they can still be significant, especially on larger 
elements.  Those are developed by the uneven rate of cooling in 
different areas.  Areas that cool quicker, such as the middle of the 
web or the tips of flanges of a W-Section tend to have residual 
compressive stress, whilst areas that cool slower, such as the 
intersections of web and flange, develop residual tensile stress. 
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What is Residual Stress?

 Residual stress is addressed as 
drops of the scale of 10-15ksi may 
have an effect on the reliability of a 
design.  The greatest reductions in 
strength are noticed in columns that 
have a “Slenderness ratio” between 
70 – 90.

 Slenderness ratio is the result of the 
division of the effective length “L” 
over the radius of gyration “r” 
– The former is essentially the 

length of the element multiplied 
by the “k” factor

– The latter is a factor that can be 
found in the AISC User's Manual.

λ= L
r



  

 

5

Qualities of Different 
Shapes
 Some shapes are more practical to fabricate
 Some shapes have better response to compressive loads
 Some shapes handle bending better
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Qualities of Different 
Shapes
  Other advantages / disadvantages:

 Round columns have less surface to paint or fireproof
 Round columns have constanr “r” and “I” values
 They have better torsional resistance and less resistance to 

wind loads
 Square or round columns are more economical and efficient 

unless moments play an important role, especially in larger 
structures

 Hollow columns are easier to keep clean, but also easier to 
be exposed to corrosion over W, S, or T shapes
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Buckling

 Main difference of a 
compressive axially loaded 
member over a tensile 
axially loaded member is 
“buckling.”
 That is the “loss of compressive 

load carrying capacity resulting 
from a change in the geometric 
formation of a member”

 A slight defect, or a slight 
eccentricity, may generate the 
deflection that will lead to a 
column's failure

NY	
  City	
  Transit	
  released	
  photos	
  of	
  Cortlandt	
  St	
  sta5on	
  the	
  week	
  of	
  24	
  September	
  2001.	
  
Subway	
  columns	
  are	
  buckled	
  from	
  the	
  impact,	
  near	
  the	
  center	
  of	
  the	
  sta5on.All	
  of	
  this	
  is	
  
gone.Source:	
  hEp://www.columbia.edu/~brennan/abandoned/Cort-­‐damage-­‐09.jpg
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Buckling

 Design equation:
 The ultimate axial load is equal 

or less than the factored 
nominal strength

Pu≤Φ Pn



  

 

9

Strength of Isolated 
Columns
 Euler's solution to 

theoretical elastic behavior:
– Based on the following 

assumptions:
 The column is pin connected
 It is perfectly straight
 Load is perfectly axial
 Behaves elastically and does 

not yield
 No residual stresses
 Bends and buckles about a 

principal axis w/out torsion. 

Pu≤Φ Pn
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Strength of Isolated 
Columns

 Euler's elastic buckling:
 The buckled shape resembles ½ a 

sinusoidal distribution.
 

 The buckling load Pe is proportional to 
the Moment of Inertia of the element

 The buckling load is inversely 
proportional to the square value of the 
length of the element (    )
• The longer the element the more 

susceptible to buckling

 Buckling is proportional to the Young's 
modulus of elasticity but independent of 
the yield strength of the material (Fy) 

PE=
π 2E I
L2

π2 E I
L2

L2
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Consider the Effects of 
Axial Load on a W Shape

 X & Y are Principal Axes

 I_max = Ix (Strong Axis)
 Higher Moment of Inertia

 I_min = Iy (Weak Axis)
 Lower Moment of Inertia

 Buckling will be about the (y) 
weak axis, unless the weak 
axis is restrained.
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Consider the Effects of 
Axial Load on a W Shape

π 2 EI x
L2

π 2 EI y
L2
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Addressing Euler's 
Buckling Load w.r.t. Stress

 Stress can be viewed as Load (P) divided by Area (A)
 If we divide both sides of Euler's equation by Area →

 But since the radius of gyration (r)is equal to the square root of 
moment of inertia (I) divided by area (A)...

 Thus Euler's elastic buckling stress is:

PE
A = π

2 E I
AL2

r=√ IA
F E=

π 2 E

( Lr )
2

r2= I
AΟR

ΟRF E=
π2 E r2

L2
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Bringing Back the Factor 
of Boundary Conditions

π 2 E

( K Lr )
2
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Load Deflection Behavior

 The Length “L” divided by the 
radius of gyration “r” is the 
slenderness ration of a column

 By plotting a graph of the stress 
in the ordinates and the 
slenderness ratio in the 
abscissa...

 r minimum corresponds to I 
minimum

 (L/r) max corresponds to r min
 Weaker axis of W section (lower 

I) controls in buckling

π 2E

( Lr )
2
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Load – Deflection Behavior

 Effects of deflection
 The column bends as soon as it is 

loaded, i.e. buckling is not an 
instantaneous effect.

 There is already stress in the column 
before loading.

 Based on Elastic theory (material does 
not yield) P is asymptotic to PE. No 
loss of strength due to deflection

 In reality material yields, and the 
additional bending stress from 
deflection causes earlier yielding and 
loss of strength

 Small deflection → little loss of 
strength, and vice versa

PE=
π 2E I
L2
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Effects of Load 
Eccentricity
 Effects of eccentricity 

(eccentrically applied 
loading) are identical to the 
effects of Δ0
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Definition and Effects of 
Residual Stresses
 Residual stress definition

 They are developed within a member during manufacturing.
 They are self equilibrating (their sum is zero) as they exist in the 

absence of any external loading.
 They are generated by:

 Uneven cooling of hot rolled elements
 Uneven cooling of welded built up elements
 Cold forming or cambering of members
 Punching, shearing, or cutting
 Welding at specific points

 Effect
 Varying behavior at specific points, areas, or along an axis

Localized

Along 
entire 
length
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Causes for Residual Stress

 Cooling of Rolled Shapes
 The uneven rate of cooling of the 

cross section.
 Member is allowed to coll slowly.  

Some portions (e.g. flange tips) 
cool quicker because they have 
more surface exposed to air

 Typically residual stresses are:
 Quick cool → Compressive
 Slow cool → Tensile

 Residual stresses are normal, not 
shear stresses

 Residual stresses are higher on 
welded shapes than rolled shapes

σ resmax≈10
ksi tο15ksi∫ σres dA=0

20

The Stump Column Test

 Residual stresses reduce 
the stiffness of a member
 Investigated by testing a 

“stub column,” i.e. too short 
to buckle.

 If there are no residual 
stresses, all fibers of the 
cross section yield 
simultaneously when the 
applied load reaches

• ...i.e. when the applied 
stress reaches P

A
=F y

A×F y
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The Stump Column Test

 Residual stresses reduce the 
stiffness of a member
 If residual stresses are present 

the first parts of the element that 
will yield are the tips of the 
flanges.  

 Then the effect will extend further 
beyond the tips of the flanges and 
the central portion of the web

 And eventually the whole section 
will yield 

 Although the maximum load will 
still be                , the load 
deflection curve is not the same

P=A×F y
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Using the Tangent 
Modulus

 The P vs Δ curve..
 Can be replotted in the 

form of average applied 
stress vs strain.

 Et is a measure of the 
cross section's average 
stiffness, considering 
that portions of the 
cross section are 
yielded, while others 
are still elastic

σ avg=
P
A
=average applied stress

ε= Δ
L0

=applied strain
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Effect of Residual Stresses 
on Column Strength

 Consider a column that is initially perfectly straight
 The buckling load can be obtained using the “tangent 

modulus theory” that was just discussed.
 The buckling load can be computed using Euler's 

equation, but replacing E with Et.
 The resulting buckling load is referred to as        

“Tangent Modulus buckling load”
 Similarly we can define the                                  

“Tangent Modulus buckling stress”
 This leads to two classes of buckling:

• Elastic, and
• Inelastic

Pt=
π 2 Et I

(K×L)2

F t=
Pt
A

=
π 2 Et

( K×L
r )

2
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Elastic / Inelastic Buckling

 Elastic
 No yielding of the cross section 

occurs prior to buckling and Et=E at 
buckling

  predicts buckling

 Inelastic
 Yielding occurs on portions of the 

cross section prior to buckling and 
there is loss of stiffness.

  predicts buckling

π 2 E

( K×L
r )

2

F t=
P t
A

π 2 Et

( K×L
r )

2F E=
π 2 E

( K×L
r )

2

FT=
π 2 ET

( K×L
r )

2
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Strength of Columns

 The discussion that was held until now indicates that the 
strength of a column is dependent upon the following:
 Slenderness
 End restraint 
 Eccentricity (loading or form)
 Yielding and Residual stresses

 All of the above factors need to be addressed in order to 
determine the strength of a real column but there are two 
approaches to do that:
 Experiments (we shall not engage in this!)
 Numerical Analysis

K factor
λ= L
r

Must consider variability 
in these factors
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Numerical Method of 
Analysis

 The AISC provides a series of equations that allow us to 
compute the column strength:

 Nominal compressive strength
where Ag is Area gross, and Fcr is the critical or buckling stress

 Design compressive strength
where Φ is the factor of safety and it is equal to 0.9

 Criterion for design

Pn=Ag×Fcr

ΦPn=Φ×Ag×F cr

Pu≤Φ×Pn
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Numerical Method of 
Analysis

 The AISC provides a series of equations that allow us to 
compute the column strength:

 Nominal compressive strength
where Ag is Area gross, and Fcr is the critical or buckling stress

 Design compressive strength
where Φ is the factor of safety and it is equal to 0.9

 Criterion for design

Pn=Ag×Fcr

ΦPn=Φ×Ag×F cr

Pu≤Φ×Pn
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Computing the Nominal 
Compressive strength

 The definition is: for Euler's buckling Stress

 When OR   → Inelastic Buckling

  (E3-2)

 When OR   → Elastic Buckling

              (E3-3) 
For elastic buckling we adopt 0.877 times the Euler's formula, 
accounting for geometric imperfections.

 Note that Fcr is independent of Fy

F E=
π 2 E

( KLr )
2

KL
r

≤4.71√ EF y

F y

Fe
≤2.25

Fcr=[0.658( FyF E)]F y
KL
r

>4.71√ EF y

F y

Fe
>2.25

F cr=0.877Fe
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The Red Line for 
Elastic / Inelastic

 Inelastic Buckling



 Note: As KL/r→ 0 Fcr→Fy

 Elastic Buckling



Fcr=[0.658( FyF E)]F y=[0.658(
F y

π2E

(KLr )
2)]F y

Fcr=0.877FE=0.877
π 2 E

( KLr )
2

30

The Red Line for 
Elastic / Inelastic

 Taking the limit:         for for 36 and 50 grade steel

   → 36 ksi gives 133.7

   → 50 ksi gives 113

 Take a typical column e.g W12x53, of Lu=12' and r=2.48”.  
With K of 1.0 this W section will give KL/r=58.  In either of the 
grades of steel this column will buckle in the inelastic range

KL
r

=4.71√ EF y

4.71√ 29,000ksi36ksi
=133.681

4.71√ 29,000ksi50ksi
=113.432
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Relation of Critical Stress 
and Slenderness Ratio

 At



  Thus 



 The transition from 
elastic to inelastic 
occurs at an applied 
axial compression 
stress of 0.39Fy

4.71√ EF y

.877 FE0.668
(KLr )

2 F y

π2E

F E=
π 2 E

( KLr )
2

KL
r =4.71√ EF y

F E=
π 2 E

( KLr )
2=
π2 E F y

4.712 E
=0.44F y

F y

F E
=2.25

Fcr=0.877FE=0.877∗.44 F y=0.39Fy
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Basic Procedures for 
Analysis

 Given the shape, the K factor, the Length and the type of 
steel can we determine the Φpn?

 Well, …..

 Fcr depends uponKL/r and Fy,
 The r we chose is the weaker one →(KL/r) max controls

 Compute (KL/r)x and (KL/r)y, and larger will govern

ΦPn=Φ×Ag×F cr



Wide Flange Shape subjected to axial loading
Problem Statement:
Determine the capacity in axial loading of the given W shape.  The element is pinned at top and bottom with
no intermediate bracing, therefore having an unbraced length of 15ft in both directions.Use A992 steel

Area Ag 15.8in2:= Young's Modulus of Elasticity E 29000ksi:=

Bolt diameter db 0.875in:=Length: Lu 15ft:=

radius of gyration y ry 2.56in:= Yield Stress: Fy 50ksi:=

radius of gyration x rx 4.37in:= Ultimate Strength: Fu 65ksi:=

K factor K 1:= Factor of Safety phi ϕ 0.9:=

Solution Method 1: Using Chapter E Equations:
1) Determining the governing slenderness ratio

λx
K Lu⋅

rx
:=

15ft 12⋅
in
ft







4.37in
λx 41.19=

λy
K Lu⋅

ry
:=

15ft 12⋅
in
ft







2.56in
λy 70.313=

r min rx ry, ( ):= r 2.56 in⋅= governing radius of gyration

The above was already obvious but it was carried on just to "academicallly" justify the numbers

2) Calculating Euler's Buckling Stress

FE
π
2 E⋅

K Lu⋅

r








2
:=

3.142 29000⋅ ksi

15ft 12⋅
in
ft

2.56in










2
FE 57.894 ksi⋅=

3) Determining if the buckling will be elastic or inelastic.

Buckling if
K Lu⋅

r








4.71
E
Fy

≤ "Inelastic", "Elastic", 








:= Buckling "Inelastic"=

Alternatively we can also follow the process below:

Fy
FE

0.864= Buckling if
Fy
FE








2.25≤ "Inelastic", "Elastic", 









:= Buckling "Inelastic"=

4) Calculating the Buckling Stress (Fcr) and the load capacity of the section:

Fcr 0.658

Fy

FE
















 Fy⋅:= 0.658

50ksi

57.89ksi












 50⋅ ksi Fcr 34.832 ksi⋅=

ΦPn ϕ Ag⋅ Fcr⋅:= 0.9 15.8⋅ in2 34.832⋅ ksi ΦPn 495.314 kip⋅=



Solution Method 2: Using Table 4-22:
1) Determining the governing slenderness ratio

λy
K Lu⋅

ry
:=

16ft 12⋅
in
ft







2.56in
λy 70.313=

2) Using table we locate the KL/r value
corresponding to the Fy used for factrized critical
stress:

The value indicated would be between 31.1 and
31.4.  Let's take 31.3

ΦFcr 31.3ksi:=

Note:  From our previous calculations:

Fcr 34.832 ksi⋅=

Therefore:

ϕ Fcr⋅ 31.349 ksi⋅=

3) Calculating the capacity of the element:

ΦPn ϕ Ag⋅ Fcr⋅:=

0.9 15.8⋅ in2 34.832⋅ ksi

ΦPn 495.314 kip⋅=



Solution Method 3:
Using Table 4-1 for
 W shapes pp 4-12 to
4-23:
Oh you will love this one!  All you need
is the unbraced length and the shape:

jcharalambides
Rectangle

jcharalambides
Line




